These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 21584808)
1. Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides. Bocchinfuso G; Bobone S; Mazzuca C; Palleschi A; Stella L Cell Mol Life Sci; 2011 Jul; 68(13):2281-301. PubMed ID: 21584808 [TBL] [Abstract][Full Text] [Related]
2. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
3. Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations. Kyriakou PK; Ekblad B; Kristiansen PE; Kaznessis YN Biochim Biophys Acta; 2016 Apr; 1858(4):824-35. PubMed ID: 26774214 [TBL] [Abstract][Full Text] [Related]
5. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4. Mishig-Ochir T; Gombosuren D; Jigjid A; Tuguldur B; Chuluunbaatar G; Urnukhsaikhan E; Pathak C; Lee BJ Protein Pept Lett; 2017; 24(3):197-205. PubMed ID: 27993125 [TBL] [Abstract][Full Text] [Related]
6. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614 [TBL] [Abstract][Full Text] [Related]
7. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers. Bennett WF; Hong CK; Wang Y; Tieleman DP J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120 [TBL] [Abstract][Full Text] [Related]
9. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study. Cheraghi N; Hosseini M; Mohammadinejad S Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244 [TBL] [Abstract][Full Text] [Related]
10. Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2[GVG] in biological model membranes. Bertrand B; Munusamy S; Espinosa-Romero JF; Corzo G; Arenas Sosa I; Galván-Hernández A; Ortega-Blake I; Hernández-Adame PL; Ruiz-García J; Velasco-Bolom JL; Garduño-Juárez R; Munoz-Garay C Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183105. PubMed ID: 31682816 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamics simulations. Bond PJ; Khalid S Protein Pept Lett; 2010 Nov; 17(11):1313-27. PubMed ID: 20673230 [TBL] [Abstract][Full Text] [Related]
12. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Chen R; Mark AE Eur Biophys J; 2011 Apr; 40(4):545-53. PubMed ID: 21267557 [TBL] [Abstract][Full Text] [Related]
13. Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations. Bocchinfuso G; Palleschi A; Orioni B; Grande G; Formaggio F; Toniolo C; Park Y; Hahm KS; Stella L J Pept Sci; 2009 Sep; 15(9):550-8. PubMed ID: 19455510 [TBL] [Abstract][Full Text] [Related]
14. Theoretical insight into the relationship between the structures of antimicrobial peptides and their actions on bacterial membranes. Chen L; Li X; Gao L; Fang W J Phys Chem B; 2015 Jan; 119(3):850-60. PubMed ID: 25062757 [TBL] [Abstract][Full Text] [Related]
15. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions. Arasteh S; Bagheri M Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500 [TBL] [Abstract][Full Text] [Related]
16. Membrane Adsorption Enhances Translocation of Antimicrobial Peptide Buforin 2. Khodam Hazrati M; Vácha R J Phys Chem B; 2024 Sep; 128(35):8469-8476. PubMed ID: 39194157 [TBL] [Abstract][Full Text] [Related]
17. Interaction of the antimicrobial peptide cyclo(RRWWRF) with membranes by molecular dynamics simulations. Appelt C; Eisenmenger F; Kühne R; Schmieder P; Söderhäll JA Biophys J; 2005 Oct; 89(4):2296-306. PubMed ID: 16040748 [TBL] [Abstract][Full Text] [Related]
18. Free Energy Analysis of Peptide-Induced Pore Formation in Lipid Membranes by Bridging Atomistic and Coarse-Grained Simulations. Richardson JD; Van Lehn RC J Phys Chem B; 2024 Sep; 128(36):8737-8752. PubMed ID: 39207202 [TBL] [Abstract][Full Text] [Related]
19. Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing. Reid KA; Davis CM; Dyer RB; Kindt JT Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):792-800. PubMed ID: 29291379 [TBL] [Abstract][Full Text] [Related]
20. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components. Malmsten M Curr Top Med Chem; 2016; 16(1):16-24. PubMed ID: 26139113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]