BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21584951)

  • 21. Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites.
    Zhang YM; Imamichi H; Imamichi T; Lane HC; Falloon J; Vasudevachari MB; Salzman NP
    J Virol; 1997 Sep; 71(9):6662-70. PubMed ID: 9261388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of FRET-based GFP probes for detection of protease inhibitors.
    Zhang B
    Biochem Biophys Res Commun; 2004 Oct; 323(2):674-8. PubMed ID: 15369803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen.
    McCullock TW; MacLean DM; Kammermeier PJ
    PLoS One; 2020; 15(2):e0219886. PubMed ID: 32023253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probe detects HIV protease and toxicity of drugs.
    AIDS Patient Care STDS; 2010 Nov; 24(11):744. PubMed ID: 21067358
    [No Abstract]   [Full Text] [Related]  

  • 25. Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants.
    Majerová-Uhlíková T; Dantuma NP; Lindsten K; Masucci MG; Konvalinka J
    J Clin Virol; 2006 May; 36(1):50-9. PubMed ID: 16527535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair.
    Hsu YY; Liu YN; Wang W; Kao FJ; Kung SH
    Biochem Biophys Res Commun; 2007 Feb; 353(4):939-45. PubMed ID: 17207462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HIV-1 Vif-derived peptide inhibits drug-resistant HIV proteases.
    Blumenzweig I; Baraz L; Friedler A; Danielson UH; Gilon C; Steinitz M; Kotler M
    Biochem Biophys Res Commun; 2002 Apr; 292(4):832-40. PubMed ID: 11944889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments.
    Kolossov VL; Spring BQ; Clegg RM; Henry JJ; Sokolowski A; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2011 Jun; 236(6):681-91. PubMed ID: 21606117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of cellular HIV-1 protease activity by lysyl-tRNA synthetase.
    Guo F; Gabor J; Cen S; Hu K; Mouland AJ; Kleiman L
    J Biol Chem; 2005 Jul; 280(28):26018-23. PubMed ID: 15888436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat.
    Fun A; van Maarseveen NM; Pokorná J; Maas RE; Schipper PJ; Konvalinka J; Nijhuis M
    Retrovirology; 2011 Aug; 8():70. PubMed ID: 21864346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-color confocal Förster (or fluorescence) resonance energy transfer microscopy: Quantitative analysis of protein interactions in the nucleation of actin filaments in live cells.
    Wallrabe H; Sun Y; Fang X; Periasamy A; Bloom GS
    Cytometry A; 2015 Jun; 87(6):580-8. PubMed ID: 25755111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a novel screen for protease inhibitors.
    Gillim L; Gusella GL; Vargas J; Marras D; Klotman ME; Cara A
    Clin Diagn Lab Immunol; 2001 Mar; 8(2):437-40. PubMed ID: 11238235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation and characterization of a human immunodeficiency virus type 1 (HIV-1) mutant resistant to an HIV-1 protease inhibitor.
    el-Farrash MA; Kuroda MJ; Kitazaki T; Masuda T; Kato K; Hatanaka M; Harada S
    J Virol; 1994 Jan; 68(1):233-9. PubMed ID: 8254733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Förster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins.
    Akrap N; Seidel T; Barisas BG
    Anal Biochem; 2010 Jul; 402(1):105-6. PubMed ID: 20347671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3C protease potency by fluorescence resonance energy transfer.
    Tsai MT; Cheng YH; Liu YN; Liao NC; Lu WW; Kung SH
    Antimicrob Agents Chemother; 2009 Feb; 53(2):748-55. PubMed ID: 19015331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visualization of beta-secretase cleavage in living cells using a genetically encoded surface-displayed [corrected] FRET probe.
    Lu J; Zhang Z; Yang J; Chu J; Li P; Zeng S; Luo Q
    Biochem Biophys Res Commun; 2007 Oct; 362(1):25-30. PubMed ID: 17698032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A rapid and simple screening method for HIV-1 protease inhibitors using recombinant Escherichia coli.
    Kaneto R; Kojima I; Shibamoto N; Nishida H; Okamoto R; Akagawa H; Mizuno S
    J Antibiot (Tokyo); 1994 Apr; 47(4):492-5. PubMed ID: 8195050
    [No Abstract]   [Full Text] [Related]  

  • 39. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
    Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW
    PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration.
    Wu M; Petryayeva E; Algar WR
    Anal Chem; 2014 Nov; 86(22):11181-8. PubMed ID: 25361050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.