These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. Schmidt JT; Fleming MR; Leu B J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146 [TBL] [Abstract][Full Text] [Related]
4. N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. Cline HT; Debski EA; Constantine-Paton M Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4342-5. PubMed ID: 2884663 [TBL] [Abstract][Full Text] [Related]
5. Analysis of synaptic distribution within single retinal axonal arbors after chronic NMDA treatment. Yen L; Sibley JT; Constantine-Paton M J Neurosci; 1995 Jun; 15(6):4712-25. PubMed ID: 7540683 [TBL] [Abstract][Full Text] [Related]
6. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition. Schmidt JT; Buzzard M; Borress R; Dhillon S J Neurobiol; 2000 Feb; 42(3):303-14. PubMed ID: 10645970 [TBL] [Abstract][Full Text] [Related]
7. Activity-dependent tuning and the NMDA receptor. Debski EA; Cline HT; Constantine-Paton M J Neurobiol; 1990 Jan; 21(1):18-32. PubMed ID: 2156953 [TBL] [Abstract][Full Text] [Related]
8. The differential influence of protein kinase inhibitors on retinal arbor morphology and eye-specific stripes in the frog retinotectal system. Cline HT; Constantine-Paton M Neuron; 1990 Jun; 4(6):899-908. PubMed ID: 2361013 [TBL] [Abstract][Full Text] [Related]
9. Chronic application of NMDA decreases the NMDA sensitivity of the evoked tectal potential in the frog. Debski EA; Cline HT; McDonald JW; Constantine-Paton M J Neurosci; 1991 Sep; 11(9):2947-57. PubMed ID: 1679126 [TBL] [Abstract][Full Text] [Related]
10. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway. Yan X; Zhao B; Butt CM; Debski EA Eur J Neurosci; 2006 Dec; 24(11):3026-42. PubMed ID: 17156364 [TBL] [Abstract][Full Text] [Related]
12. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening. Schmidt JT; Buzzard M J Neurobiol; 1993 Mar; 24(3):384-99. PubMed ID: 7684064 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation. RenterĂa RC; Constantine-Paton M J Neurosci; 1999 Aug; 19(16):7066-76. PubMed ID: 10436061 [TBL] [Abstract][Full Text] [Related]
14. Long-term potentiation and activity-dependent retinotopic sharpening in the regenerating retinotectal projection of goldfish: common sensitive period and sensitivity to NMDA blockers. Schmidt JT J Neurosci; 1990 Jan; 10(1):233-46. PubMed ID: 2153773 [TBL] [Abstract][Full Text] [Related]
16. Fine-structural alterations and clustering of developing synapses after chronic treatments with low levels of NMDA. Yen LH; Sibley JT; Constantine-Paton M J Neurosci; 1993 Nov; 13(11):4949-60. PubMed ID: 8229207 [TBL] [Abstract][Full Text] [Related]
17. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity. Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382 [TBL] [Abstract][Full Text] [Related]