These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 2158526)
21. Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations. Sakaguchi DS; Murphey RK J Neurosci; 1985 Dec; 5(12):3228-45. PubMed ID: 3001241 [TBL] [Abstract][Full Text] [Related]
22. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection. Ben Fredj N; Hammond S; Otsuna H; Chien CB; Burrone J; Meyer MP J Neurosci; 2010 Aug; 30(32):10939-51. PubMed ID: 20702722 [TBL] [Abstract][Full Text] [Related]
23. Development of topographic order in the mammalian retinocollicular projection. Simon DK; O'Leary DD J Neurosci; 1992 Apr; 12(4):1212-32. PubMed ID: 1313491 [TBL] [Abstract][Full Text] [Related]
24. Pre- and postsynaptic correlates of interocular competition and segregation in the frog. Constantine-Paton M; Ferrari-Eastman P J Comp Neurol; 1987 Jan; 255(2):178-95. PubMed ID: 3493268 [TBL] [Abstract][Full Text] [Related]
25. Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission. O'Rourke NA; Cline HT; Fraser SE Neuron; 1994 Apr; 12(4):921-34. PubMed ID: 8161460 [TBL] [Abstract][Full Text] [Related]
26. An electrophysiological study of the action of N-methyl-D-aspartate on excitatory synaptic transmission in the optic tectum of the frog in vitro. Nistri A; Sivilotti L; Welsh DM Neuropharmacology; 1990 Jul; 29(7):681-7. PubMed ID: 1974714 [TBL] [Abstract][Full Text] [Related]
27. Relationships between segregated afferents and postsynaptic neurones in the optic tectum of three-eyed frogs. Katz LC; Constantine-Paton M J Neurosci; 1988 Sep; 8(9):3160-80. PubMed ID: 3262721 [TBL] [Abstract][Full Text] [Related]
28. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. Edwards JA; Cline HT J Neurophysiol; 1999 Feb; 81(2):895-907. PubMed ID: 10036287 [TBL] [Abstract][Full Text] [Related]
29. Single retinal changing contrast (third) detector elicits NMDA receptor response and higher activity level of frog tectum neuron network. Kuras A; Baginskas A; Batuleviciene V; Lamanauskas N Exp Brain Res; 2007 May; 179(2):209-17. PubMed ID: 17136527 [TBL] [Abstract][Full Text] [Related]
30. The contributions of NMDA, non-NMDA, and GABA receptors to postsynaptic responses in neurons of the optic tectum. Hickmott PW; Constantine-Paton M J Neurosci; 1993 Oct; 13(10):4339-53. PubMed ID: 7692012 [TBL] [Abstract][Full Text] [Related]
31. Pharmacologic evidence for NMDA, APB and kainate/quisqualate retinotectal transmission in the isolated whole tectum of goldfish. van Deusen EB; Meyer RL Brain Res; 1990 Dec; 536(1-2):86-96. PubMed ID: 1964834 [TBL] [Abstract][Full Text] [Related]
32. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number. Norden JJ; Constantine-Paton M J Comp Neurol; 1994 Oct; 348(3):461-79. PubMed ID: 7844258 [TBL] [Abstract][Full Text] [Related]
33. Topographic map formation and the effects of NMDA receptor blockade in the developing visual system. Li VJ; Schohl A; Ruthazer ES Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35193956 [TBL] [Abstract][Full Text] [Related]
34. Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus. Udin SB; Scherer WJ Science; 1990 Aug; 249(4969):669-72. PubMed ID: 2166343 [TBL] [Abstract][Full Text] [Related]
35. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection. Xiong M; Pallas SL; Lim S; Finlay BL J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893 [TBL] [Abstract][Full Text] [Related]
36. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors. Schmidt JT; Turcotte JC; Buzzard M; Tieman DG J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728 [TBL] [Abstract][Full Text] [Related]
37. Mechanisms involved in development of retinotectal connections: roles of Eph receptor tyrosine kinases, NMDA receptors and nitric oxide. Ernst AF; Jurney WM; McLoon SC Prog Brain Res; 1998; 118():115-31. PubMed ID: 9932438 [TBL] [Abstract][Full Text] [Related]
38. Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors. Leu BH; Schmidt JT Dev Neurobiol; 2008 Jan; 68(1):18-30. PubMed ID: 17918241 [TBL] [Abstract][Full Text] [Related]
39. Compensation for population size mismatches in the hamster retinotectal system: alterations in the organization of retinal projections. Pallas SL; Finlay BL Vis Neurosci; 1991 Mar; 6(3):271-81. PubMed ID: 2054328 [TBL] [Abstract][Full Text] [Related]
40. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets. Cantore WA; Scalia F J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]