These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 2158526)

  • 41. A light- and electron-microscopic investigation of the optic tectum of the frog, Rana pipiens, I: The retinal axons.
    Hughes TE
    Vis Neurosci; 1990 Jun; 4(6):499-518. PubMed ID: 2278931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish.
    Olson MD; Meyer RL
    J Comp Neurol; 1994 Sep; 347(4):481-94. PubMed ID: 7529264
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Masking effect of NMDA receptor antagonists on the formation of long-term potentiation (LTP) in superior colliculus slices from the guinea pig.
    Miyamoto T; Sakurai T; Okada Y
    Brain Res; 1990 Jun; 518(1-2):166-72. PubMed ID: 1975212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative autoradiographic localization of NMDA, quisqualate and PCP receptors in the frog tectum.
    McDonald JW; Cline HT; Constantine-Paton M; Maragos WF; Johnston MV; Young AB
    Brain Res; 1989 Mar; 482(1):155-8. PubMed ID: 2539881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in retinal arbors in compressed projections to half tecta in goldfish.
    Schmidt J; Coen T
    J Neurobiol; 1995 Dec; 28(4):409-18. PubMed ID: 8592102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H; O'Leary DD
    J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Growth cone-target interactions in the frog retinotectal pathway.
    Reh TA; Constantine-Paton M
    J Neurosci Res; 1985; 13(1-2):89-100. PubMed ID: 2983078
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NMDA receptor blockade alters the topography of naturally occurring ganglion cell death in the rat retina.
    Bunch ST; Fawcett JW
    Dev Biol; 1993 Dec; 160(2):434-42. PubMed ID: 8253276
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GAP43 phosphorylation is critical for growth and branching of retinotectal arbors in zebrafish.
    Leu B; Koch E; Schmidt JT
    Dev Neurobiol; 2010 Nov; 70(13):897-911. PubMed ID: 20669323
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An evaluation of the hypothesis of shifting terminals in goldfish optic tectum.
    Easter SS; Stuermer CA
    J Neurosci; 1984 Apr; 4(4):1052-63. PubMed ID: 6325603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MK801-induced antagonism of NMDA-preferring excitatory amino acid receptors in horizontal cells of the turtle retina.
    Anderton PJ; Millar TJ
    Neurosci Lett; 1989 Jul; 101(3):331-6. PubMed ID: 2549465
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activity-driven sharpening of the regenerating retinotectal projection: effects of blocking or synchronizing activity on the morphology of individual regenerating arbors.
    Schmidt JT; Buzzard M
    J Neurobiol; 1990 Sep; 21(6):900-17. PubMed ID: 1706412
    [TBL] [Abstract][Full Text] [Related]  

  • 53. N-methyl-D-aspartate receptors of ganglion cells in rabbit retina.
    Massey SC; Miller RF
    J Neurophysiol; 1990 Jan; 63(1):16-30. PubMed ID: 2153770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The contribution of protein kinases to plastic events in the superior colliculus.
    McCrossan D; Withington DJ; Platt B
    Prog Neuropsychopharmacol Biol Psychiatry; 1997 Apr; 21(3):487-505. PubMed ID: 9153069
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole-mount study.
    Stuermer CA
    J Comp Neurol; 1984 Oct; 229(2):214-32. PubMed ID: 6501601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synaptic transmission at N-methyl-D-aspartate receptors in the proximal retina of the mudpuppy.
    Lukasiewicz PD; McReynolds JS
    J Physiol; 1985 Oct; 367():99-115. PubMed ID: 2865366
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors.
    Hahm JO; Langdon RB; Sur M
    Nature; 1991 Jun; 351(6327):568-70. PubMed ID: 1675433
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog: I. The size of the contralateral and ipsilateral projections.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Dec; 302(4):792-809. PubMed ID: 1707068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo.
    Cogen J; Cohen-Cory S
    J Neurobiol; 2000 Nov; 45(2):120-33. PubMed ID: 11018773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Retinotopic organization of the developing retinotectal projection in the zebrafish embryo.
    Stuermer CA
    J Neurosci; 1988 Dec; 8(12):4513-30. PubMed ID: 2848935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.