These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21585321)

  • 1. Heat shock protein DnaK--substrate of actin-specific bacterial protease ECP32.
    Morozova AV; Khaitlina SY; Malinin AY
    Biochemistry (Mosc); 2011 Apr; 76(4):455-61. PubMed ID: 21585321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial protease ECP32 specifically hydrolyzing actin and its effect on cytoskeleton in vivo.
    Morozova AV; Skovorodkin IN; Khaitlina SY; Malinin AY
    Biochemistry (Mosc); 2001 Jan; 66(1):83-90. PubMed ID: 11240398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and functional analysis of the DnaK homologue from Prevotella intermedia OMZ 326.
    Kadri R; Devine D; Ashraf W
    FEMS Microbiol Lett; 1998 Oct; 167(1):63-8. PubMed ID: 9785453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The story on an intriguing actin-specific protease that turned out to be grimelysin, a member of a respectable family of thermolysin-like metalloproteinases].
    Khaĭtlina SIu
    Tsitologiia; 2009; 51(3):182-9. PubMed ID: 19435272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning of the dnaK locus, and purification and characterization of a DnaK protein from Bacillus brevis HPD31.
    Tokunaga H; Yamakawa M; Mizukami M; Takagi H; Tokunaga M
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):65-79. PubMed ID: 9748507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.
    Zuber U; Schumann W
    J Bacteriol; 1994 Mar; 176(5):1359-63. PubMed ID: 8113175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.
    Osipiuk J; Joachimiak A
    Biochim Biophys Acta; 1997 Sep; 1353(3):253-65. PubMed ID: 9349721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preparation and identification of the polyclonal antibody against heat shock protein 70 (DnaK) from Shigella flexneri 5a M90T].
    Wang Y; Zhou W; Liao X; Yue J; Song T; Dai H; Chen X; Liang L; Huhe B
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2015 Jan; 31(1):105-9. PubMed ID: 25575068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis.
    Schulz A; Tzschaschel B; Schumann W
    Mol Microbiol; 1995 Feb; 15(3):421-9. PubMed ID: 7540247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria.
    Zmijewski MA; Skórko-Glonek J; Tanfani F; Banecki B; Kotlarz A; Macario AJ; Lipińska B
    Acta Biochim Pol; 2007; 54(2):245-52. PubMed ID: 17565388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities.
    Zmijewski MA; Skórko-Glonek J; Tanfani F; Banecki B; Kotlarz A; Macario AJ; Lipińska B
    Acta Biochim Pol; 2007; 54(3):509-22. PubMed ID: 17882322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain.
    Shonhai A; Boshoff A; Blatch GL
    Mol Genet Genomics; 2005 Aug; 274(1):70-8. PubMed ID: 15973516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli.
    Kedzierska S; Chesnokova LS; Witt SN; Zolkiewski M
    Arch Biochem Biophys; 2005 Dec; 444(1):61-5. PubMed ID: 16289019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-transcriptional regulation of the Bacillus subtilis dnaK operon.
    Homuth G; Mogk A; Schumann W
    Mol Microbiol; 1999 Jun; 32(6):1183-97. PubMed ID: 10383760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor.
    Liberek K; Galitski TP; Zylicz M; Georgopoulos C
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3516-20. PubMed ID: 1565647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and sequence analysis of the dnaK gene region of Lactococcus lactis subsp. lactis.
    Eaton T; Shearman C; Gasson M
    J Gen Microbiol; 1993 Dec; 139(12):3253-64. PubMed ID: 8126443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes.
    Schulz A; Schumann W
    J Bacteriol; 1996 Feb; 178(4):1088-93. PubMed ID: 8576042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator.
    Liberek K; Wall D; Georgopoulos C
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6224-8. PubMed ID: 7603976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock proteins and inflammatory acne vulgaris: molecular cloning, overexpression and purification of a propionibacterium acnes GroEL and DnaK homologue.
    Farrar MD; Ingham E; Holland KT
    FEMS Microbiol Lett; 2000 Oct; 191(2):183-6. PubMed ID: 11024261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli.
    Tomoyasu T; Ogura T; Tatsuta T; Bukau B
    Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.