These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 21585372)
1. Amphiphilic polylactic acid-hyperbranched polyglycerol nanoparticles as a controlled release system for poorly water-soluble drugs: physicochemical characterization. Gao X; Zhang X; Zhang X; Wang Y; Sun L; Li C J Pharm Pharmacol; 2011 Jun; 63(6):757-64. PubMed ID: 21585372 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and physicochemical characterization of a novel amphiphilic polylactic acid-hyperbranched polyglycerol conjugate for protein delivery. Gao X; Zhang X; Wu Z; Zhang X; Wang Z; Li C J Control Release; 2009 Dec; 140(2):141-7. PubMed ID: 19683553 [TBL] [Abstract][Full Text] [Related]
3. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Islami M; Zarrabi A; Tada S; Kawamoto M; Isoshima T; Ito Y Int J Nanomedicine; 2018; 13():6059-6071. PubMed ID: 30323593 [TBL] [Abstract][Full Text] [Related]
4. A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery. Zhang X; Zhang X; Wu Z; Gao X; Cheng C; Wang Z; Li C Acta Biomater; 2011 Feb; 7(2):585-92. PubMed ID: 20813209 [TBL] [Abstract][Full Text] [Related]
5. PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions. Cavallaro G; Craparo EF; Sardo C; Lamberti G; Barba AA; Dalmoro A Int J Pharm; 2015 Nov; 495(2):719-27. PubMed ID: 26410757 [TBL] [Abstract][Full Text] [Related]
6. Hydrotropic polymeric mixed micelles based on functional hyperbranched polyglycerol copolymers as hepatoma-targeting drug delivery system. Zhang X; Zhang X; Yu P; Han Y; Li Y; Li C J Pharm Sci; 2013 Jan; 102(1):145-53. PubMed ID: 23132353 [TBL] [Abstract][Full Text] [Related]
7. Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release. Li Y; Wu H; Yang X; Jia M; Li Y; Huang Y; Lin J; Wu S; Hou Z Mol Pharm; 2014 Aug; 11(8):2915-27. PubMed ID: 24984984 [TBL] [Abstract][Full Text] [Related]
8. OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability. Bao H; Jin X; Li L; Lv F; Liu T J Mater Sci Mater Med; 2012 Aug; 23(8):1891-901. PubMed ID: 22569733 [TBL] [Abstract][Full Text] [Related]
9. Development and in vitro characterization of paclitaxel and docetaxel loaded into hydrophobically derivatized hyperbranched polyglycerols. Mugabe C; Liggins RT; Guan D; Manisali I; Chafeeva I; Brooks DE; Heller M; Jackson JK; Burt HM Int J Pharm; 2011 Feb; 404(1-2):238-49. PubMed ID: 21093563 [TBL] [Abstract][Full Text] [Related]
10. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation. Pandey SK; Patel DK; Thakur R; Mishra DP; Maiti P; Haldar C Int J Biol Macromol; 2015 Apr; 75():521-9. PubMed ID: 25701491 [TBL] [Abstract][Full Text] [Related]
11. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique. Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445 [TBL] [Abstract][Full Text] [Related]
12. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. Panyam J; Williams D; Dash A; Leslie-Pelecky D; Labhasetwar V J Pharm Sci; 2004 Jul; 93(7):1804-14. PubMed ID: 15176068 [TBL] [Abstract][Full Text] [Related]
13. High glycolic poly (DL lactic co glycolic acid) nanoparticles for controlled release of meropenem. Nandakumar V; Geetha V; Chittaranjan S; Doble M Biomed Pharmacother; 2013 Jun; 67(5):431-6. PubMed ID: 23583192 [TBL] [Abstract][Full Text] [Related]
14. Nanoencapsulation of a water soluble drug in biocompatible polyesters. Effect of polyesters melting point and glass transition temperature on drug release behavior. Karavelidis V; Giliopoulos D; Karavas E; Bikiaris D Eur J Pharm Sci; 2010 Dec; 41(5):636-43. PubMed ID: 20863892 [TBL] [Abstract][Full Text] [Related]
15. [Preparation and evaluation of sustained-release microsphere of Sanguis Draconis in vitro]. Ding LY; Xia PF; Yang CQ; Lin YL; Wang J Zhongguo Zhong Yao Za Zhi; 2007 Mar; 32(5):388-90. PubMed ID: 17511140 [TBL] [Abstract][Full Text] [Related]
16. Poly(lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug. Wang W; Chen S; Zhang L; Wu X; Wang J; Chen JF; Le Y Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():514-20. PubMed ID: 25492016 [TBL] [Abstract][Full Text] [Related]
17. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Wu TH; Yen FL; Lin LT; Tsai TR; Lin CC; Cham TM Int J Pharm; 2008 Jan; 346(1-2):160-8. PubMed ID: 17689897 [TBL] [Abstract][Full Text] [Related]
19. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Han S; Liu Y; Nie X; Xu Q; Jiao F; Li W; Zhao Y; Wu Y; Chen C Small; 2012 May; 8(10):1596-606. PubMed ID: 22411637 [TBL] [Abstract][Full Text] [Related]
20. Improved antifungal activity of itraconazole-loaded PEG/PLA nanoparticles. Essa S; Louhichi F; Raymond M; Hildgen P J Microencapsul; 2013; 30(3):205-17. PubMed ID: 22894166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]