BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21585389)

  • 1. Transition from wind pollination to insect pollination in sedges: experimental evidence and functional traits.
    Wragg PD; Johnson SD
    New Phytol; 2011 Sep; 191(4):1128-1140. PubMed ID: 21585389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The best of two worlds: ecology and evolution of ambophilous plants.
    Abrahamczyk S; Struck JH; Weigend M
    Biol Rev Camb Philos Soc; 2023 Apr; 98(2):391-420. PubMed ID: 36270973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scent matters: differential contribution of scent to insect response in flowers with insect vs. wind pollination traits.
    Wang TN; Clifford MR; Martínez-Gómez J; Johnson JC; Riffell JA; Di Stilio VS
    Ann Bot; 2019 Jan; 123(2):289-301. PubMed ID: 30052759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition with wind-pollinated plant species alters floral traits of insect-pollinated plant species.
    Flacher F; Raynaud X; Hansart A; Motard E; Dajoz I
    Sci Rep; 2015 Sep; 5():13345. PubMed ID: 26335409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Floral trait evolution associated with shifts between insect and wind pollination in the dioecious genus Leucadendron (Proteaceae).
    Welsford MR; Hobbhahn N; Midgley JJ; Johnson SD
    Evolution; 2016 Jan; 70(1):126-39. PubMed ID: 26593965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neither insects nor wind: ambophily in dioecious Chamaedorea palms (Arecaceae).
    Rios LD; Fuchs EJ; Hodel DR; Cascante-Marín A
    Plant Biol (Stuttg); 2014 Jul; 16(4):702-10. PubMed ID: 25068158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scent chemistry is key in the evolutionary transition between insect and mammal pollination in African pineapple lilies.
    Wester P; Johnson SD; Pauw A
    New Phytol; 2019 May; 222(3):1624-1637. PubMed ID: 30613998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect pollination for most of angiosperm evolutionary history.
    Stephens RE; Gallagher RV; Dun L; Cornwell W; Sauquet H
    New Phytol; 2023 Oct; 240(2):880-891. PubMed ID: 37276503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants.
    Friedman J; Barrett SC
    Ann Bot; 2009 Jun; 103(9):1515-27. PubMed ID: 19218583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproductive biology and pollination ecology of Triplaris gardneriana (Polygonaceae): a case of ambophily in the Brazilian Chaco.
    Custodio T; Comtois P; Araujo AC
    Plant Biol (Stuttg); 2017 Jul; 19(4):504-514. PubMed ID: 28145619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heterospecific pollen from a wind-pollinated and pesticide-treated plant on reproductive success of an insect-pollinated species.
    Arceo-Gómez G; Jameel MI; Ashman TL
    Am J Bot; 2018 May; 105(5):836-841. PubMed ID: 29799624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal variation in the pollination systems of a supergeneralist plant: is Angelica sylvestris (Apiaceae) locally adapted to its most effective pollinators?
    Zych M; Junker RR; Nepi M; Stpiczynska M; Stolarska B; Roguz K
    Ann Bot; 2019 Jan; 123(2):415-428. PubMed ID: 30059963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Floral scent in bird- and beetle-pollinated Protea species (Proteaceae): chemistry, emission rates and function.
    Steenhuisen SL; Raguso RA; Johnson SD
    Phytochemistry; 2012 Dec; 84():78-87. PubMed ID: 22999809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ongoing decline in insect-pollinated plants across Danish grasslands.
    Ehlers BK; Bataillon T; Damgaard CF
    Biol Lett; 2021 Nov; 17(11):20210493. PubMed ID: 34813720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shrubs as magnets for pollination: A test of facilitation and reciprocity in a shrub-annual facilitation system.
    Ruttan A; Lortie CJ; Haas SM
    Curr Res Insect Sci; 2021; 1():100008. PubMed ID: 36003594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollination systems and floral traits in cerrado woody species of the Upper Taquari region (central Brazil).
    Martins FQ; Batalha MA
    Braz J Biol; 2006 May; 66(2A):543-52. PubMed ID: 16862310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent selection on the biomechanical properties of stamens under wind and insect pollination.
    Timerman D; Barrett SCH
    Proc Biol Sci; 2018 Dec; 285(1893):20182251. PubMed ID: 30963912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the pathway to wind pollination: heritabilities and genetic correlations of inflorescence traits associated with wind pollination in Schiedea salicaria (Caryophyllaceae).
    Weller SG; Sakai AK; Culley TM; Campbell DR; Dunbar-Wallis AK
    J Evol Biol; 2006 Mar; 19(2):331-42. PubMed ID: 16599909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scent chemistry and pollinators in the holoparasitic plant Cynomorium songaricum (Cynomoriaceae).
    Wang D; Yu H; Chen G
    Plant Biol (Stuttg); 2021 Jan; 23(1):111-120. PubMed ID: 32915486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of ovule number and flower size in wind-pollinated plants.
    Friedman J; Barrett SC
    Am Nat; 2011 Feb; 177(2):246-57. PubMed ID: 21460560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.