These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 21585584)

  • 41. Different amino acid substitutions at the same position in rhodopsin lead to distinct phenotypes.
    Neidhardt J; Barthelmes D; Farahmand F; Fleischhauer JC; Berger W
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1630-5. PubMed ID: 16565402
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Importance of alanine at position 178 in proteorhodopsin for absorption of prevalent ambient light in the marine environment.
    Yamada K; Kawanabe A; Kandori H
    Biochemistry; 2010 Mar; 49(11):2416-23. PubMed ID: 20170125
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phylogeny of Glaucosomatidae inferred from molecular evidence.
    Liu SH; Yeh WB; Mok HK
    J Fish Biol; 2010 Feb; 76(2):348-56. PubMed ID: 20738711
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dispersal, vicariance, and timing of diversification in Nothonotus darters.
    Near TJ; Keck BP
    Mol Ecol; 2005 Oct; 14(11):3485-96. PubMed ID: 16156817
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Positive Darwinian selection at the pantophysin (Pan I) locus in marine gadid fishes.
    Pogson GH; Mesa KA
    Mol Biol Evol; 2004 Jan; 21(1):65-75. PubMed ID: 12949133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparing host and parasite phylogenies: gyrodactylus flatworms jumping from goby to goby.
    Huyse T; Volckaert FA
    Syst Biol; 2005 Oct; 54(5):710-8. PubMed ID: 16195215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The molecular signature of selection underlying human adaptations.
    Harris EE; Meyer D
    Am J Phys Anthropol; 2006; Suppl 43():89-130. PubMed ID: 17103426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vertebrate rhodopsin adaptation to dim light via rapid meta-II intermediate formation.
    Sugawara T; Imai H; Nikaido M; Imamoto Y; Okada N
    Mol Biol Evol; 2010 Mar; 27(3):506-19. PubMed ID: 19858068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Out of Cuba: overwater dispersal and speciation among lizards in the Anolis carolinensis subgroup.
    Glor RE; Losos JB; Larson A
    Mol Ecol; 2005 Jul; 14(8):2419-32. PubMed ID: 15969724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative genomics and the study of evolution by natural selection.
    Ellegren H
    Mol Ecol; 2008 Nov; 17(21):4586-96. PubMed ID: 19140982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation.
    Barrett RD
    J Fish Biol; 2010 Aug; 77(2):311-28. PubMed ID: 20646158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying footprints of directional and balancing selection in marine and freshwater three-spined stickleback (Gasterosteus aculeatus) populations.
    Mäkinen HS; Cano JM; Merilä J
    Mol Ecol; 2008 Aug; 17(15):3565-82. PubMed ID: 18312551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla.
    McCarren J; DeLong EF
    Environ Microbiol; 2007 Apr; 9(4):846-58. PubMed ID: 17359257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins.
    Porter ML; Cronin TW; McClellan DA; Crandall KA
    Mol Biol Evol; 2007 Jan; 24(1):253-68. PubMed ID: 17053049
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae).
    Niemiller ML; Fitzpatrick BM; Shah P; Schmitz L; Near TJ
    Evolution; 2013 Mar; 67(3):732-48. PubMed ID: 23461324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular phylogeny and biogeography of the spider ants, genus Leptomyrmex Mayr (Hymenoptera: Formicidae).
    Lucky A
    Mol Phylogenet Evol; 2011 May; 59(2):281-92. PubMed ID: 21406240
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Population genetic analyses of Hypoplectrus coral reef fishes provide evidence that local processes are operating during the early stages of marine adaptive radiations.
    Puebla O; Bermingham E; Guichard F
    Mol Ecol; 2008 Mar; 17(6):1405-15. PubMed ID: 18321253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. To be or not to be a hamlet pair in sympatry.
    Salzburger W
    Mol Ecol; 2008 Mar; 17(6):1397-9. PubMed ID: 18321252
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ecological opportunity and the origin of adaptive radiations.
    Yoder JB; Clancey E; Des Roches S; Eastman JM; Gentry L; Godsoe W; Hagey TJ; Jochimsen D; Oswald BP; Robertson J; Sarver BA; Schenk JJ; Spear SF; Harmon LJ
    J Evol Biol; 2010 Aug; 23(8):1581-96. PubMed ID: 20561138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Checklist of gobies (Teleostei: Gobiidae) of the Mediterranean Sea and a key for species identification.
    KovaČiĆ M
    Zootaxa; 2020 Nov; 4877(1):zootaxa.4877.1.3. PubMed ID: 33311326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.