These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 21585710)
21. Molecular modeling of hair keratin/peptide complex: Using MM-PBSA calculations to describe experimental binding results. Azoia NG; Fernandes MM; Micaêlo NM; Soares CM; Cavaco-Paulo A Proteins; 2012 May; 80(5):1409-17. PubMed ID: 22275089 [TBL] [Abstract][Full Text] [Related]
22. Molecular basis of the interaction for an essential subunit PA-PB1 in influenza virus RNA polymerase: insights from molecular dynamics simulation and free energy calculation. Liu H; Yao X Mol Pharm; 2010 Feb; 7(1):75-85. PubMed ID: 19883112 [TBL] [Abstract][Full Text] [Related]
23. Calculations of the free energy of interaction of the c-Fos-c-Jun coiled coil: effects of the solvation model and the inclusion of polarization effects. Zuo Z; Gandhi NS; Mancera RL J Chem Inf Model; 2010 Dec; 50(12):2201-12. PubMed ID: 21090792 [TBL] [Abstract][Full Text] [Related]
24. Kinase inhibitors and the case for CH...O hydrogen bonds in protein-ligand binding. Pierce AC; Sandretto KL; Bemis GW Proteins; 2002 Dec; 49(4):567-76. PubMed ID: 12402365 [TBL] [Abstract][Full Text] [Related]
25. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods. Gouda H; Kuntz ID; Case DA; Kollman PA Biopolymers; 2003 Jan; 68(1):16-34. PubMed ID: 12579577 [TBL] [Abstract][Full Text] [Related]
26. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I; Sadiq SK; Coveney PV J Am Chem Soc; 2008 Feb; 130(8):2639-48. PubMed ID: 18225901 [TBL] [Abstract][Full Text] [Related]
27. Importance of polar solvation for cross-reactivity of antibody and its variants with steroids. Kar P; Lipowsky R; Knecht V J Phys Chem B; 2011 Jun; 115(23):7661-9. PubMed ID: 21595427 [TBL] [Abstract][Full Text] [Related]
29. Protein kinase C isozymes and their selectivity towards ruboxistaurin. Tang S; Xiao V; Wei L; Whiteside CI; Kotra LP Proteins; 2008 Jul; 72(1):447-60. PubMed ID: 18214957 [TBL] [Abstract][Full Text] [Related]
30. Density functional theory calculations on entire proteins for free energies of binding: application to a model polar binding site. Fox SJ; Dziedzic J; Fox T; Tautermann CS; Skylaris CK Proteins; 2014 Dec; 82(12):3335-46. PubMed ID: 25212393 [TBL] [Abstract][Full Text] [Related]
31. High affinity targets of protein kinase inhibitors have similar residues at the positions energetically important for binding. Sheinerman FB; Giraud E; Laoui A J Mol Biol; 2005 Oct; 352(5):1134-56. PubMed ID: 16139843 [TBL] [Abstract][Full Text] [Related]
32. Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-Cyanovirin-N. Vorontsov II; Miyashita O J Comput Chem; 2011 Apr; 32(6):1043-53. PubMed ID: 20949512 [TBL] [Abstract][Full Text] [Related]
33. Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate. Díaz N; Suárez D Proteins; 2008 Jul; 72(1):50-61. PubMed ID: 18186480 [TBL] [Abstract][Full Text] [Related]
34. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Rastelli G; Del Rio A; Degliesposti G; Sgobba M J Comput Chem; 2010 Mar; 31(4):797-810. PubMed ID: 19569205 [TBL] [Abstract][Full Text] [Related]
35. Molecular dynamics simulations of 2-amino-6-arylsulphonylbenzonitriles analogues as HIV inhibitors: interaction modes and binding free energies. Hu R; Barbault F; Maurel F; Delamar M; Zhang R Chem Biol Drug Des; 2010 Dec; 76(6):518-26. PubMed ID: 20942836 [TBL] [Abstract][Full Text] [Related]
36. Recognition of selected monosaccharides by Pseudomonas aeruginosa Lectin II analyzed by molecular dynamics and free energy calculations. Mishra NK; Kríz Z; Wimmerová M; Koca J Carbohydr Res; 2010 Jul; 345(10):1432-41. PubMed ID: 20546713 [TBL] [Abstract][Full Text] [Related]
37. Molecular docking/dynamics studies of Aurora A kinase inhibitors. Talele TT; McLaughlin ML J Mol Graph Model; 2008 Jun; 26(8):1213-22. PubMed ID: 18096419 [TBL] [Abstract][Full Text] [Related]
38. Charge optimization of the interface between protein kinases and their ligands. Sims PA; Wong CF; McCammon JA J Comput Chem; 2004 Aug; 25(11):1416-29. PubMed ID: 15185335 [TBL] [Abstract][Full Text] [Related]
39. Molecular dynamics simulations and MM/GBSA methods to investigate binding mechanisms of aminomethylpyrimidine inhibitors with DPP-IV. Desheng L; Jian G; Yuanhua C; Wei C; Huai Z; Mingjuan J Bioorg Med Chem Lett; 2011 Nov; 21(22):6630-5. PubMed ID: 21996517 [TBL] [Abstract][Full Text] [Related]
40. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. Frembgen-Kesner T; Elcock AH J Mol Biol; 2006 May; 359(1):202-14. PubMed ID: 16616932 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]