These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 21585772)

  • 1. COMPUTER PROGRAMS: nessi: a program for numerical estimations in sporophytic self-incompatibility genetic systems.
    Billiard S
    Mol Ecol Resour; 2008 Mar; 8(2):295-8. PubMed ID: 21585772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does frequency-dependent selection with complex dominance interactions accurately predict allelic frequencies at the self-incompatibility locus in Arabidopsis halleri?
    Llaurens V; Billiard S; Leducq JB; Castric V; Klein EK; Vekemans X
    Evolution; 2008 Oct; 62(10):2545-57. PubMed ID: 18647339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unequal allelic frequencies at the self-incompatibility locus within local populations of Prunus avium L.: an effect of population structure?
    Stoeckel S; Castric V; Mariette S; Vekemans X
    J Evol Biol; 2008 May; 21(3):889-99. PubMed ID: 18284513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances.
    Castric V; Vekemans X
    Mol Ecol; 2004 Oct; 13(10):2873-89. PubMed ID: 15367105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general model to explore complex dominance patterns in plant sporophytic self-incompatibility systems.
    Billiard S; Castric V; Vekemans X
    Genetics; 2007 Mar; 175(3):1351-69. PubMed ID: 17237502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of dominance in sporophytic self-incompatibility systems. II. Mate availability and recombination.
    Schoen DJ; Busch JW
    Evolution; 2009 Aug; 63(8):2099-113. PubMed ID: 19453382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microevolution of S-allele frequencies in wild cherry populations: respective impacts of negative frequency dependent selection and genetic drift.
    Stoeckel S; Klein EK; Oddou-Muratorio S; Musch B; Mariette S
    Evolution; 2012 Feb; 66(2):486-504. PubMed ID: 22276543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uneven segregation of sporophytic self-incompatibility alleles in Arabidopsis lyrata.
    Bechsgaard J; Bataillon T; Schierup MH
    J Evol Biol; 2004 May; 17(3):554-61. PubMed ID: 15149398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of dominance in sporophytic self-incompatibility systems: I. Genetic load and coevolution of levels of dominance in pollen and pistil.
    Llaurens V; Billiard S; Castric V; Vekemans X
    Evolution; 2009 Sep; 63(9):2427-37. PubMed ID: 19473398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary dynamics of sporophytic self-incompatibility alleles in plants.
    Schierup MH; Vekemans X; Christiansen FB
    Genetics; 1997 Oct; 147(2):835-46. PubMed ID: 9335618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MATE AVAILABILITY AND FECUNDITY SELECTION IN MULTI-ALLELIC SELF-INCOMPATIBILITY SYSTEMS IN PLANTS.
    Vekemans X; Schierup MH; Christiansen FB
    Evolution; 1998 Feb; 52(1):19-29. PubMed ID: 28568138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata(Brassicaceae) with sporophytic control of self-incompatibility.
    Mable BK; Schierup MH; Charlesworth D
    Heredity (Edinb); 2003 Jun; 90(6):422-31. PubMed ID: 12764417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes.
    Prigoda NL; Nassuth A; Mable BK
    Mol Biol Evol; 2005 Jul; 22(7):1609-20. PubMed ID: 15858208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) I: S allele diversity in a natural population.
    Brennan AC; Harris SA; Tabah DA; Hiscock SJ
    Heredity (Edinb); 2002 Dec; 89(6):430-8. PubMed ID: 12466985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient SI and the dynamics of self-incompatibility alleles: a simulation model and empirical test.
    Goodwillie C
    Evolution; 2008 Aug; 62(8):2105-11. PubMed ID: 18507744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites.
    Schueler S; Tusch A; Scholz F
    Mol Ecol; 2006 Oct; 15(11):3231-43. PubMed ID: 16968267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): the number, frequency, and dominance interactions of S alleles across its British range.
    Brennan AC; Harris SA; Hiscock SJ
    Evolution; 2006 Feb; 60(2):213-24. PubMed ID: 16610314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haplotype structure of the stigmatic self-incompatibility gene in natural populations of Arabidopsis lyrata.
    Charlesworth D; Bartolomé C; Schierup MH; Mable BK
    Mol Biol Evol; 2003 Nov; 20(11):1741-53. PubMed ID: 12832651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allelic diversity of S-RNase at the self-incompatibility locus in natural flowering cherry populations (Prunus lannesiana var. speciosa).
    Kato S; Mukai Y
    Heredity (Edinb); 2004 Mar; 92(3):249-56. PubMed ID: 14710172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allelic genealogies in sporophytic self-incompatibility systems in plants.
    Schierup MH; Vekemans X; Christiansen FB
    Genetics; 1998 Nov; 150(3):1187-98. PubMed ID: 9799270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.