BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 21586293)

  • 1. Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling.
    Leenders JJ; Pinto YM; Creemers EE
    J Mol Cell Cardiol; 2011 Aug; 51(2):156-67. PubMed ID: 21586293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes.
    Nakagawa Y; Kuwahara K; Harada M; Takahashi N; Yasuno S; Adachi Y; Kawakami R; Nakanishi M; Tanimoto K; Usami S; Kinoshita H; Saito Y; Nakao K
    J Mol Cell Cardiol; 2006 Dec; 41(6):1010-22. PubMed ID: 17011572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy.
    Buitrago M; Lorenz K; Maass AH; Oberdorf-Maass S; Keller U; Schmitteckert EM; Ivashchenko Y; Lohse MJ; Engelhardt S
    Nat Med; 2005 Aug; 11(8):837-44. PubMed ID: 16025126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple chromatin modifications important for gene expression changes in cardiac hypertrophy.
    Bingham AJ; Ooi L; Wood IC
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1138-40. PubMed ID: 17073769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth.
    Sanna B; Bueno OF; Dai YS; Wilkins BJ; Molkentin JD
    Mol Cell Biol; 2005 Feb; 25(3):865-78. PubMed ID: 15657416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The repressor element 1-silencing transcription factor regulates heart-specific gene expression using multiple chromatin-modifying complexes.
    Bingham AJ; Ooi L; Kozera L; White E; Wood IC
    Mol Cell Biol; 2007 Jun; 27(11):4082-92. PubMed ID: 17371849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs.
    Molkentin JD
    Cardiovasc Res; 2004 Aug; 63(3):467-75. PubMed ID: 15276472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation.
    Tomita H; Nazmy M; Kajimoto K; Yehia G; Molina CA; Sadoshima J
    Circ Res; 2003 Jul; 93(1):12-22. PubMed ID: 12791704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual roles of histone deacetylases in the control of cardiac growth.
    McKinsey TA; Olson EN
    Novartis Found Symp; 2004; 259():132-41; discussion 141-5, 163-9. PubMed ID: 15171251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs target gene and signaling pathway by bioinformatics analysis in the cardiac hypertrophy.
    Shen E; Diao X; Wei C; Wu Z; Zhang L; Hu B
    Biochem Biophys Res Commun; 2010 Jul; 397(3):380-5. PubMed ID: 20510881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation.
    Olson EN; Backs J; McKinsey TA
    Novartis Found Symp; 2006; 274():3-12; discussion 13-9, 152-5, 272-6. PubMed ID: 17019803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular regulation of cardiac hypertrophy.
    Barry SP; Davidson SM; Townsend PA
    Int J Biochem Cell Biol; 2008; 40(10):2023-39. PubMed ID: 18407781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses.
    Clerk A; Cullingford TE; Fuller SJ; Giraldo A; Markou T; Pikkarainen S; Sugden PH
    J Cell Physiol; 2007 Aug; 212(2):311-22. PubMed ID: 17450511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of histone deacetylase 2 by inducible heat shock protein 70 in cardiac hypertrophy.
    Kee HJ; Eom GH; Joung H; Shin S; Kim JR; Cho YK; Choe N; Sim BW; Jo D; Jeong MH; Kim KK; Seo JS; Kook H
    Circ Res; 2008 Nov; 103(11):1259-69. PubMed ID: 18849323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced expression of DYRK1A in cardiomyocytes inhibits acute NFAT activation but does not prevent hypertrophy in vivo.
    Grebe C; Klingebiel TM; Grau SP; Toischer K; Didié M; Jacobshagen C; Dullin C; Hasenfuss G; Seidler T
    Cardiovasc Res; 2011 Jun; 90(3):521-8. PubMed ID: 21273244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development.
    Chang S; McKinsey TA; Zhang CL; Richardson JA; Hill JA; Olson EN
    Mol Cell Biol; 2004 Oct; 24(19):8467-76. PubMed ID: 15367668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY; Iwata Y; Arai Y; Komamura K; Wakabayashi S
    Circ Res; 2008 Oct; 103(8):891-9. PubMed ID: 18776042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic signaling pathways that regulate cardiac hypertrophy.
    Molkentin JD; Dorn GW
    Annu Rev Physiol; 2001; 63():391-426. PubMed ID: 11181961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling.
    Muñoz JP; Collao A; Chiong M; Maldonado C; Adasme T; Carrasco L; Ocaranza P; Bravo R; Gonzalez L; Díaz-Araya G; Hidalgo C; Lavandero S
    Biochem Biophys Res Commun; 2009 Oct; 388(1):155-60. PubMed ID: 19654000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Cardiac hypertrophy: molecular and cellular events].
    Carreño JE; Apablaza F; Ocaranza MP; Jalil JE
    Rev Esp Cardiol; 2006 May; 59(5):473-86. PubMed ID: 16750145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.