These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21586317)

  • 21. Developmental plasticity of auditory cortical inhibitory synapses.
    Sanes DH; Kotak VC
    Hear Res; 2011 Sep; 279(1-2):140-8. PubMed ID: 21463668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms Underlying Long-Term Synaptic Zinc Plasticity at Mouse Dorsal Cochlear Nucleus Glutamatergic Synapses.
    Vogler NW; Betti VM; Goldberg JM; Tzounopoulos T
    J Neurosci; 2020 Jun; 40(26):4981-4996. PubMed ID: 32434779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The multiple functions of T stellate/multipolar/chopper cells in the ventral cochlear nucleus.
    Oertel D; Wright S; Cao XJ; Ferragamo M; Bal R
    Hear Res; 2011 Jun; 276(1-2):61-9. PubMed ID: 21056098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss.
    McGuire B; Fiorillo B; Ryugo DK; Lauer AM
    Brain Res; 2015 Apr; 1605():22-30. PubMed ID: 25686750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specific plasticity responses to unilaterally decreased or increased hearing intensity in the adult cochlear nucleus and beyond.
    Illing RB; Reisch A
    Hear Res; 2006; 216-217():189-97. PubMed ID: 16624512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-term synaptic depression is topographically distributed in the cochlear nucleus of the chicken.
    Oline SN; Burger RM
    J Neurosci; 2014 Jan; 34(4):1314-24. PubMed ID: 24453322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the Short-Term Dynamics of
    Ghanbari A; Ren N; Keine C; Stoelzel C; Englitz B; Swadlow HA; Stevenson IH
    J Neurosci; 2020 May; 40(21):4185-4202. PubMed ID: 32303648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct forms of synaptic plasticity during ascending vs descending control of medial olivocochlear efferent neurons.
    Romero GE; Trussell LO
    Elife; 2021 Jul; 10():. PubMed ID: 34250904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus.
    Ahn J; MacLeod KM
    J Neurophysiol; 2016 Mar; 115(3):1679-90. PubMed ID: 26719087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic transmission between end bulbs of Held and bushy cells in the cochlear nucleus of mice with a mutation in Otoferlin.
    Wright S; Hwang Y; Oertel D
    J Neurophysiol; 2014 Dec; 112(12):3173-88. PubMed ID: 25253474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss.
    Whiting B; Moiseff A; Rubio ME
    Neuroscience; 2009 Nov; 163(4):1264-76. PubMed ID: 19646510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure.
    Manohar S; Ramchander PV; Salvi R; Seigel GM
    Neuroscience; 2019 Feb; 399():184-198. PubMed ID: 30593923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent.
    Garcia-Pino E; Caminos E; Juiz JM
    J Comp Neurol; 2010 Apr; 518(8):1301-14. PubMed ID: 20151361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synaptic inputs to granule cells of the dorsal cochlear nucleus.
    Balakrishnan V; Trussell LO
    J Neurophysiol; 2008 Jan; 99(1):208-19. PubMed ID: 17959739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity.
    Cao XJ; Oertel D
    J Neurophysiol; 2010 Nov; 104(5):2308-20. PubMed ID: 20739600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hearing loss raises excitability in the auditory cortex.
    Kotak VC; Fujisawa S; Lee FA; Karthikeyan O; Aoki C; Sanes DH
    J Neurosci; 2005 Apr; 25(15):3908-18. PubMed ID: 15829643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycinergic mIPSCs in mouse and rat brainstem auditory nuclei: modulation by ruthenium red and the role of calcium stores.
    Lim R; Oleskevich S; Few AP; Leao RN; Walmsley B
    J Physiol; 2003 Feb; 546(Pt 3):691-9. PubMed ID: 12562997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem.
    MacLeod KM; Horiuchi TK; Carr CE
    J Neurophysiol; 2007 Apr; 97(4):2863-74. PubMed ID: 17251365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecularly and structurally distinct synapses mediate reliable encoding and processing of auditory information.
    Wichmann C
    Hear Res; 2015 Dec; 330(Pt B):178-90. PubMed ID: 26188105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of spontaneous activity in development of the endbulb of Held synapse.
    McKay SM; Oleskevich S
    Hear Res; 2007 Aug; 230(1-2):53-63. PubMed ID: 17590547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.