These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21586388)

  • 21. Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes.
    Wu H; Doherty A; Jones HD
    Transgenic Res; 2008 Jun; 17(3):425-36. PubMed ID: 17638109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Wheat transformation by electroporation with ring electrode].
    Liang H; Wu FS; Wang DW; Sun DF; Jia X
    Yi Chuan Xue Bao; 2005 Jan; 32(1):66-71. PubMed ID: 15715440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation.
    Wang K; Shi L; Liang X; Zhao P; Wang W; Liu J; Chang Y; Hiei Y; Yanagihara C; Du L; Ishida Y; Ye X
    Nat Plants; 2022 Feb; 8(2):110-117. PubMed ID: 35027699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biolistic Transformation of Wheat.
    Tassy C; Barret P
    Methods Mol Biol; 2017; 1679():141-152. PubMed ID: 28913799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Optimization of biological and physical parameters for biolistic genetic transformation of common wheat (Triticum aestivum L.) using a particle inflow gun].
    Genetika; 2006 Apr; 42(4):507-18. PubMed ID: 16756070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions.
    Ismagul A; Yang N; Maltseva E; Iskakova G; Mazonka I; Skiba Y; Bi H; Eliby S; Jatayev S; Shavrukov Y; Borisjuk N; Langridge P
    BMC Plant Biol; 2018 Jun; 18(1):135. PubMed ID: 29940859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-dependent transformation frequency in elite wheat varieties.
    Pastori GM; Wilkinson MD; Steele SH; Sparks CA; Jones HD; Parry MA
    J Exp Bot; 2001 Apr; 52(357):857-63. PubMed ID: 11413223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biolistic transformation of wheat using the HMW-GS 1Dx5 gene without selectable markers.
    Qin JB; Wang Y; Zhu CQ
    Genet Mol Res; 2014 Jun; 13(2):4361-71. PubMed ID: 25036180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wheat (Triticum aestivum L.) transformation using immature embryos.
    Ishida Y; Tsunashima M; Hiei Y; Komari T
    Methods Mol Biol; 2015; 1223():189-98. PubMed ID: 25300841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wheat (Triticum aestivum L.).
    Wan Y; Layton J
    Methods Mol Biol; 2006; 343():245-53. PubMed ID: 16988349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of doubled haploid transgenic wheat lines by microspore transformation.
    Brew-Appiah RA; Ankrah N; Liu W; Konzak CF; von Wettstein D; Rustgi S
    PLoS One; 2013; 8(11):e80155. PubMed ID: 24260351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regeneration from mature and immature embryos and transient gene expression via Agrobacterium-mediated transformation in emmer wheat (Triticum dicoccum Schuble).
    Khurana J; Chugh A; Khurana P
    Indian J Exp Biol; 2002 Nov; 40(11):1295-303. PubMed ID: 13677634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Establishment of a method for GUS gene transferring into wheat (Triticum astivum L.) embryos by low energy ion beam implantation].
    Wu LF; Li H; Song DJ; Feng HY; Yu ZL
    Yi Chuan Xue Bao; 2000; 27(11):982-91. PubMed ID: 11209692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GM wheat development in China: current status and challenges to commercialization.
    Xia L; Ma Y; He Y; Jones HD
    J Exp Bot; 2012 Mar; 63(5):1785-90. PubMed ID: 22174439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos.
    Shrawat AK; Good AG
    Methods Mol Biol; 2011; 710():355-72. PubMed ID: 21207280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overview of the Wheat Genetic Transformation and Breeding Status in China.
    Han J; Yu X; Chang J; Yang G; He G
    Methods Mol Biol; 2017; 1679():37-60. PubMed ID: 28913793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Transgenic wheat (Triticum aestivum L.) with increased resistance to the storage pest obtained by Agrobacterium tumefaciens--mediated].
    Bi RM; Jia HY; Feng DS; Wang HG
    Sheng Wu Gong Cheng Xue Bao; 2006 May; 22(3):431-7. PubMed ID: 16755923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of simple and efficient in Planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens.
    Supartana P; Shimizu T; Nogawa M; Shioiri H; Nakajima T; Haramoto N; Nozue M; Kojima M
    J Biosci Bioeng; 2006 Sep; 102(3):162-70. PubMed ID: 17046528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Efficient Agrobacterium-Mediated Transformation Protocol for Hexaploid and Tetraploid Wheat.
    Hayta S; Smedley MA; Clarke M; Forner M; Harwood WA
    Curr Protoc; 2021 Mar; 1(3):e58. PubMed ID: 33656289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S; Zhang R; Song G; Gao J; Li W; Han X; Chen M; Li Y; Li G
    BMC Plant Biol; 2018 Nov; 18(1):302. PubMed ID: 30477421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.