These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21586602)

  • 1. In vitro 3D culture of human chondrocytes using modified ε-caprolactone scaffolds with varying hydrophilicity and porosity.
    Olmedilla MP; Lebourg M; Ivirico JE; Nebot I; Giralt NG; Ferrer GG; Soria J; Ribelles JG
    J Biomater Appl; 2012 Sep; 27(3):299-309. PubMed ID: 21586602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats.
    Lowery JL; Datta N; Rutledge GC
    Biomaterials; 2010 Jan; 31(3):491-504. PubMed ID: 19822363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications.
    Ivirico JL; Martínez EC; Sánchez MS; Criado IM; Ribelles JL; Pradas MM
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):266-75. PubMed ID: 17405167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds.
    Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH
    Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (ε-caprolactone)/chitosan/poly (ε-caprolactone) scaffolds interactions.
    Ozkan O; Turkoglu Sasmazel H
    J Biosci Bioeng; 2016 Aug; 122(2):232-9. PubMed ID: 26906227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of hybridization of hydrogels and poly(L-lactide-co-epsilon-caprolactone) scaffolds on cartilage tissue engineering.
    Jung Y; Kim SH; Kim YH; Kim SH
    J Biomater Sci Polym Ed; 2010; 21(5):581-92. PubMed ID: 20338093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of epsilon-caprolactone in the presence of poly(ethylene glycol).
    Huang MH; Li S; Hutmacher DW; Schantz JT; Vacanti CA; Braud C; Vert M
    J Biomed Mater Res A; 2004 Jun; 69(3):417-27. PubMed ID: 15127388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds.
    García Cruz DM; Salmerón-Sánchez M; Gómez-Ribelles JL
    J Biomed Mater Res A; 2012 Sep; 100(9):2330-41. PubMed ID: 22529045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering.
    El-Ayoubi R; DeGrandpré C; DiRaddo R; Yousefi AM; Lavigne P
    J Biomater Appl; 2011 Jan; 25(5):429-44. PubMed ID: 20042429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering.
    Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E
    J Tissue Eng Regen Med; 2011 Nov; 5(10):770-9. PubMed ID: 22002920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyaline-specific extracellular matrix protein synthesis.
    Garcia-Giralt N; Izquierdo R; Nogués X; Perez-Olmedilla M; Benito P; Gómez-Ribelles JL; Checa MA; Suay J; Caceres E; Monllau JC
    J Biomed Mater Res A; 2008 Jun; 85(4):1082-9. PubMed ID: 17937412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D,L-lactide and epsilon-caprolactone: influence of pore volume, pore size and pore shape.
    Declercq HA; Gorski TL; Schacht EH; Cornelissen MJ
    J Mater Sci Mater Med; 2008 Sep; 19(9):3105-14. PubMed ID: 18415000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester.
    Odelius K; Plikk P; Albertsson AC
    Biomacromolecules; 2005; 6(5):2718-25. PubMed ID: 16153111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable, high modulus, and fatigue resistant composite scaffold for load-bearing soft tissue regeneration.
    Hayami JW; Waldman SD; Amsden BG
    Biomacromolecules; 2013 Dec; 14(12):4236-47. PubMed ID: 24147621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore size effect of collagen scaffolds on cartilage regeneration.
    Zhang Q; Lu H; Kawazoe N; Chen G
    Acta Biomater; 2014 May; 10(5):2005-13. PubMed ID: 24384122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.