These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 21586646)
1. From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. Mason KL; Stepien TA; Blum JE; Holt JF; Labbe NH; Rush JS; Raffa KF; Handelsman J mBio; 2011; 2(3):e00065-11. PubMed ID: 21586646 [TBL] [Abstract][Full Text] [Related]
2. Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis toward the tobacco hornworm, Manduca sexta. Johnston PR; Crickmore N Appl Environ Microbiol; 2009 Aug; 75(15):5094-9. PubMed ID: 19525273 [TBL] [Abstract][Full Text] [Related]
3. Shifting paradigm on Bacillus thuringiensis toxin and a natural model for Enterococcus faecalis septicemia. Graf J mBio; 2011; 2(4):. PubMed ID: 21846827 [TBL] [Abstract][Full Text] [Related]
4. Enterococcus faecalis 6-phosphogluconolactonase is required for both commensal and pathogenic interactions with Manduca sexta. Holt JF; Kiedrowski MR; Frank KL; Du J; Guan C; Broderick NA; Dunny GM; Handelsman J Infect Immun; 2015 Jan; 83(1):396-404. PubMed ID: 25385794 [TBL] [Abstract][Full Text] [Related]
5. Susceptibility of Manduca sexta to Cry1Ab toxin of Bacillus thuringiensis correlates directly to developmental expression of the cadherin receptor BT-R(1). Griko N; Zhang X; Ibrahim M; Midboe EG; Bulla LA Comp Biochem Physiol B Biochem Mol Biol; 2008 Sep; 151(1):59-63. PubMed ID: 18582591 [TBL] [Abstract][Full Text] [Related]
6. Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis. Flores-Escobar B; Rodríguez-Magadan H; Bravo A; Soberón M; Gómez I Appl Environ Microbiol; 2013 Aug; 79(15):4543-50. PubMed ID: 23686267 [TBL] [Abstract][Full Text] [Related]
7. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. Broderick NA; Robinson CJ; McMahon MD; Holt J; Handelsman J; Raffa KF BMC Biol; 2009 Mar; 7():11. PubMed ID: 19261175 [TBL] [Abstract][Full Text] [Related]
8. Mutations at domain II, loop 3, of Bacillus thuringiensis CryIAa and CryIAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts. Rajamohan F; Hussain SR; Cotrill JA; Gould F; Dean DH J Biol Chem; 1996 Oct; 271(41):25220-6. PubMed ID: 8810282 [TBL] [Abstract][Full Text] [Related]
10. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Caccia S; Di Lelio I; La Storia A; Marinelli A; Varricchio P; Franzetti E; Banyuls N; Tettamanti G; Casartelli M; Giordana B; Ferré J; Gigliotti S; Ercolini D; Pennacchio F Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9486-91. PubMed ID: 27506800 [TBL] [Abstract][Full Text] [Related]
11. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Denolf P; Hendrickx K; Van Damme J; Jansens S; Peferoen M; Degheele D; Van Rie J Eur J Biochem; 1997 Sep; 248(3):748-61. PubMed ID: 9342226 [TBL] [Abstract][Full Text] [Related]
12. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. Gómez I; Oltean DI; Gill SS; Bravo A; Soberón M J Biol Chem; 2001 Aug; 276(31):28906-12. PubMed ID: 11384982 [TBL] [Abstract][Full Text] [Related]
13. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Reese JM; Casanova-Torres AM; Goodrich-Blair H; Forst S Appl Environ Microbiol; 2014 Jul; 80(14):4277-85. PubMed ID: 24814780 [TBL] [Abstract][Full Text] [Related]
14. Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles. Lebel G; Vachon V; Préfontaine G; Girard F; Masson L; Juteau M; Bah A; Larouche G; Vincent C; Laprade R; Schwartz JL Appl Environ Microbiol; 2009 Jun; 75(12):3842-50. PubMed ID: 19376918 [TBL] [Abstract][Full Text] [Related]
15. A novel insecticidal toxin from photorhabdus luminescens, toxin complex a (Tca), and its histopathological effects on the midgut of manduca sexta. Blackburn M; Golubeva E; Bowen D; Ffrench-Constant RH Appl Environ Microbiol; 1998 Aug; 64(8):3036-41. PubMed ID: 9687470 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide participates in the toxicity of Bacillus thuringiensis Cry1Ab toxin to kill Manduca sexta larvae. Chavez C; Recio-Tótoro B; Flores-Escobar B; Lanz-Mendoza H; Sanchez J; Soberón M; Bravo A Peptides; 2015 Jun; 68():134-9. PubMed ID: 25063056 [TBL] [Abstract][Full Text] [Related]
17. Effects of midgut-protein-preparative and ligand binding procedures on the toxin binding characteristics of BT-R1, a common high-affinity receptor in Manduca sexta for Cry1A Bacillus thuringiensis toxins. Keeton TP; Francis BR; Maaty WS; Bulla LA Appl Environ Microbiol; 1998 Jun; 64(6):2158-65. PubMed ID: 9603829 [TBL] [Abstract][Full Text] [Related]
18. Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism. Rahman K; Abdullah MA; Ambati S; Taylor MD; Adang MJ Appl Environ Microbiol; 2012 Jan; 78(2):354-62. PubMed ID: 22081566 [TBL] [Abstract][Full Text] [Related]
19. Cysteine scanning mutagenesis of alpha4, a putative pore-lining helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa. Girard F; Vachon V; Préfontaine G; Marceau L; Su Y; Larouche G; Vincent C; Schwartz JL; Masson L; Laprade R Appl Environ Microbiol; 2008 May; 74(9):2565-72. PubMed ID: 18326669 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation. Pacheco S; Gómez I; Gill SS; Bravo A; Soberón M Peptides; 2009 Mar; 30(3):583-8. PubMed ID: 18778745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]