BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21587167)

  • 1. Advances in fiducial-free image-guidance for spinal radiosurgery with CyberKnife--a phantom study.
    Fürweger C; Drexler C; Kufeld M; Muacevic A; Wowra B
    J Appl Clin Med Phys; 2010 Dec; 12(2):3446. PubMed ID: 21587167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system.
    Antypas C; Pantelis E
    Phys Med Biol; 2008 Sep; 53(17):4697-718. PubMed ID: 18695294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery.
    Muacevic A; Staehler M; Drexler C; Wowra B; Reiser M; Tonn JC
    J Neurosurg Spine; 2006 Oct; 5(4):303-12. PubMed ID: 17048766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking.
    Ho AK; Fu D; Cotrutz C; Hancock SL; Chang SD; Gibbs IC; Maurer CR; Adler JR
    Neurosurgery; 2007 Feb; 60(2 Suppl 1):ONS147-56; discussion ONS156. PubMed ID: 17297377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases.
    Fürweger C; Drexler C; Kufeld M; Muacevic A; Wowra B; Schlaefer A
    Int J Radiat Oncol Biol Phys; 2010 Nov; 78(3):937-45. PubMed ID: 20395063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An anthropomorphic phantom study of the accuracy of Cyberknife spinal radiosurgery.
    Yu C; Main W; Taylor D; Kuduvalli G; Apuzzo ML; Adler JR
    Neurosurgery; 2004 Nov; 55(5):1138-49. PubMed ID: 15509320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the total system error of a robotic radiosurgery system: phantom measurements, clinical evaluation and long-term analysis.
    Pantelis E; Moutsatsos A; Antypas C; Zoros E; Pantelakos P; Lekas L; Romanelli P; Zourari K; Hourdakis CJ
    Phys Med Biol; 2018 Aug; 63(16):165015. PubMed ID: 30033940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-end validation of fiducial tracking accuracy in robotic radiosurgery using MRI-only simulation imaging.
    Singhrao K; Zubair M; Nano T; Scholey JE; Descovich M
    Med Phys; 2024 Jan; 51(1):31-41. PubMed ID: 38055419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of system using beam's eye view images to measure respiratory motion tracking errors in image-guided robotic radiosurgery system.
    Inoue M; Shiomi H; Iwata H; Taguchi J; Okawa K; Kikuchi C; Inada K; Iwabuchi M; Murai T; Koike I; Tatewaki K; Ohta S; Inoue T
    J Appl Clin Med Phys; 2015 Jan; 16(1):5049. PubMed ID: 25679160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiducial-free real-time image-guided robotic radiosurgery for tumors of the sacrum/pelvis.
    Muacevic A; Drexler C; Kufeld M; Romanelli P; Duerr HJ; Wowra B
    Radiother Oncol; 2009 Oct; 93(1):37-44. PubMed ID: 19552980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CyberKnife Xsight versus fiducial-based target-tracking: a novel 3D dosimetric comparison in a dynamic phantom.
    Klein TJ; Gill S; Ebert MA; Grogan G; Smith W; Alkhatib Z; Geraghty J; Scott AJD; Brown A; Rowshanfarzad P
    Radiat Oncol; 2022 Sep; 17(1):154. PubMed ID: 36076249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CyberKnife in clinical use: current roles, future expectations.
    Dieterich S; Gibbs IC
    Front Radiat Ther Oncol; 2011; 43():181-194. PubMed ID: 21625154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors that may determine the targeting accuracy of image-guided radiosurgery.
    Subedi G; Karasick T; Grimm J; Jain S; Xue J; Xu Q; Chen Y; Asbell S; Pahlajani N; LaCouture T
    Med Phys; 2015 Oct; 42(10):6004-10. PubMed ID: 26429275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Setup accuracy of spine radiosurgery using cone beam computed tomography image guidance in patients with spinal implants.
    Gerszten PC; Monaco EA; Quader M; Novotny J; Kim JO; Flickinger JC; Huq MS
    J Neurosurg Spine; 2010 Apr; 12(4):413-20. PubMed ID: 20367378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Commissioning and initial stereotactic ablative radiotherapy experience with Vero.
    Solberg TD; Medin PM; Ramirez E; Ding C; Foster RD; Yordy J
    J Appl Clin Med Phys; 2014 Mar; 15(2):4685. PubMed ID: 24710458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner.
    Kim H; Fabien J; Zheng Y; Yuan J; Brindle J; Sloan A; Yao M; Lo S; Wessels B; Machtay M; Welford S; Sohn JW
    Med Phys; 2014 Feb; 41(2):021715. PubMed ID: 24506606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of planning target volume margin when using a robotic radiosurgery system to treat lung tumors with spine tracking.
    James J; Swanson C; Lynch B; Wang B; Dunlap NE
    Pract Radiat Oncol; 2015; 5(4):e337-43. PubMed ID: 25532489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of fiducial-based image registration in the Cyberknife robotic system.
    Saw CB; Chen H; Wagner H
    Med Dosim; 2008; 33(2):156-60. PubMed ID: 18456167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for monitoring the constancy of beam path accuracy in CyberKnife.
    Yang B; Wong WKR; Lam WW; Geng H; Kong CW; Cheung KY; Yu SK
    J Appl Clin Med Phys; 2019 May; 20(5):109-119. PubMed ID: 31004395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system.
    Chang SD; Main W; Martin DP; Gibbs IC; Heilbrun MP
    Neurosurgery; 2003 Jan; 52(1):140-6; discussion 146-7. PubMed ID: 12493111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.