These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 21587234)
1. Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure. Montey KL; Quinlan EM Nat Commun; 2011; 2():317. PubMed ID: 21587234 [TBL] [Abstract][Full Text] [Related]
2. Experience-dependent recovery of vision following chronic deprivation amblyopia. He HY; Ray B; Dennis K; Quinlan EM Nat Neurosci; 2007 Sep; 10(9):1134-6. PubMed ID: 17694050 [TBL] [Abstract][Full Text] [Related]
3. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation. Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470 [TBL] [Abstract][Full Text] [Related]
4. Optimization of visual training for full recovery from severe amblyopia in adults. Eaton NC; Sheehan HM; Quinlan EM Learn Mem; 2016 Feb; 23(2):99-103. PubMed ID: 26787781 [TBL] [Abstract][Full Text] [Related]
5. Nogo Receptor 1 Limits Ocular Dominance Plasticity but not Turnover of Axonal Boutons in a Model of Amblyopia. Frantz MG; Kast RJ; Dorton HM; Chapman KS; McGee AW Cereb Cortex; 2016 May; 26(5):1975-85. PubMed ID: 25662716 [TBL] [Abstract][Full Text] [Related]
6. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. He HY; Hodos W; Quinlan EM J Neurosci; 2006 Mar; 26(11):2951-5. PubMed ID: 16540572 [TBL] [Abstract][Full Text] [Related]
7. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein. Nakadate K; Imamura K; Watanabe Y Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607 [TBL] [Abstract][Full Text] [Related]
8. Binocular visual training to promote recovery from monocular deprivation. Murphy KM; Roumeliotis G; Williams K; Beston BR; Jones DG J Vis; 2015 Jan; 15(1):15.1.2. PubMed ID: 25572348 [TBL] [Abstract][Full Text] [Related]
9. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex. Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180 [TBL] [Abstract][Full Text] [Related]
10. tDCS recovers depth perception in adult amblyopic rats and reorganizes visual cortex activity. Castaño-Castaño S; Feijoo-Cuaresma M; Paredes-Pacheco J; Morales-Navas M; Ruiz-Guijarro JA; Sanchez-Santed F; Nieto-Escámez F Behav Brain Res; 2019 Sep; 370():111941. PubMed ID: 31078617 [TBL] [Abstract][Full Text] [Related]
14. Classification of Visual Cortex Plasticity Phenotypes following Treatment for Amblyopia. Balsor JL; Jones DG; Murphy KM Neural Plast; 2019; 2019():2564018. PubMed ID: 31565045 [TBL] [Abstract][Full Text] [Related]
15. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats. Iurilli G; Olcese U; Medini P PLoS One; 2013; 8(12):e82044. PubMed ID: 24349181 [TBL] [Abstract][Full Text] [Related]
16. Effects of brief daily periods of unrestricted vision during early monocular form deprivation on development of visual area 2. Zhang B; Tao X; Wensveen JM; Harwerth RS; Smith EL; Chino YM Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7222-31. PubMed ID: 21849427 [TBL] [Abstract][Full Text] [Related]
17. Repetitive visual stimulation enhances recovery from severe amblyopia. Montey KL; Eaton NC; Quinlan EM Learn Mem; 2013 May; 20(6):311-7. PubMed ID: 23685763 [TBL] [Abstract][Full Text] [Related]
18. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia. Bochner DN; Sapp RW; Adelson JD; Zhang S; Lee H; Djurisic M; Syken J; Dan Y; Shatz CJ Sci Transl Med; 2014 Oct; 6(258):258ra140. PubMed ID: 25320232 [TBL] [Abstract][Full Text] [Related]
19. Visual acuity development and plasticity in the absence of sensory experience. Kang E; Durand S; LeBlanc JJ; Hensch TK; Chen C; Fagiolini M J Neurosci; 2013 Nov; 33(45):17789-96. PubMed ID: 24198369 [TBL] [Abstract][Full Text] [Related]
20. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice. Lickey ME; Pham TA; Gordon B Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]