These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2158768)

  • 1. Mechanisms of Ca2+ overload in reperfused ischemic myocardium.
    Tani M
    Annu Rev Physiol; 1990; 52():543-59. PubMed ID: 2158768
    [No Abstract]   [Full Text] [Related]  

  • 2. Na(+)-Ca2+ exchanger and cardiac contraction.
    Lancet; 1990 Jul; 336(8709):219-20. PubMed ID: 1973777
    [No Abstract]   [Full Text] [Related]  

  • 3. [Ion-transport system and various components of sarcolemma structure during acute myocardial ischemia].
    Mkhitarian LS
    Vopr Med Khim; 1987; 33(1):21-5. PubMed ID: 3577053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and mechanism: modulation of ion transport in the cardiac sarcolemma sodium-calcium exchanger by protons, monovalent, ions, and temperature.
    Khananshvili D; Weil-Maslansky E; Baazov D
    Ann N Y Acad Sci; 1996 Apr; 779():217-35. PubMed ID: 8659830
    [No Abstract]   [Full Text] [Related]  

  • 5. [Calcium-transporting systems and calcium regulation in cardiomyocytes].
    Aleksandrova EA
    Usp Fiziol Nauk; 2001; 32(3):40-8. PubMed ID: 11565424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sarcolemmal calcium transporters in myocardial ischemia.
    Bersohn MM; Morey AK; Weiss RS
    J Mol Cell Cardiol; 1997 Sep; 29(9):2525-32. PubMed ID: 9299375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Ca2+ transport by insulin and taurine. Interaction at the level of the Na(+)-Ca2+ exchanger.
    Schaffer SW; Nguyen K; Ballard C; Gardner N; Azuma J
    Adv Exp Med Biol; 1996; 403():551-60. PubMed ID: 8915393
    [No Abstract]   [Full Text] [Related]  

  • 8. Irreversible damage to sarcolemmal Ca2+ transport in myocardial ischemia.
    Dhalla NS; Dixon IM; Beamish RE
    Biomed Biochim Acta; 1987; 46(8-9):S505-11. PubMed ID: 2449189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on heart sarcolemma: vesicles of opposite orientation and the effect of ATP on the Na+/Ca2+ exchanger.
    Reinlib L; Caroni P; Carafoli E
    FEBS Lett; 1981 Apr; 126(1):74-6. PubMed ID: 6453725
    [No Abstract]   [Full Text] [Related]  

  • 10. The control of calcium influx by cytoplasmic calcium in mammalian heart muscle.
    Kirby MS; Orchard C; Boyett MR
    Mol Cell Biochem; 1989 Sep; 89(2):109-13. PubMed ID: 2554119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation energy of the cardiac Na+/Ca2+ exchanger in sarcolemmal vesicles and reconstituted proteoliposomes.
    Dalla Serra M; Pederzolli C; Antolini R; Cusinato F; Luciani S; Menestrina G
    Cardioscience; 1991 Sep; 2(3):193-7. PubMed ID: 1742469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of cardiac sarcolemmal sodium-calcium exchanger by glycerophosphoinositol 4-phosphate and glycerophosphoinositol 4-5-bisphosphate.
    Luciani S; Antolini M; Bova S; Cargnelli G; Cusinato F; Debetto P; Trevisi L; Varotto R
    Biochem Biophys Res Commun; 1995 Jan; 206(2):674-80. PubMed ID: 7826386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration in calcium metabolism in mitochondria isolated from ischemic and reperfused myocardium.
    Peng CF; Murphy ML; Kane JJ; Straub KD
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():533-8. PubMed ID: 1031950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of the Na+/Ca2+ exchanger by phenylephrine, angiotensin II and endothelin 1.
    Ballard C; Schaffer S
    J Mol Cell Cardiol; 1996 Jan; 28(1):11-7. PubMed ID: 8745210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca2+ transport.
    Tappia PS; Hata T; Hozaima L; Sandhu MS; Panagia V; Dhalla NS
    Arch Biochem Biophys; 2001 Mar; 387(1):85-92. PubMed ID: 11368187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium in the cardiac diadic cleft. Implications for sodium-calcium exchange.
    Langer GA; Peskoff A
    Ann N Y Acad Sci; 1996 Apr; 779():408-16. PubMed ID: 8659857
    [No Abstract]   [Full Text] [Related]  

  • 17. [Isolation from the myocardial sarcolemma of a protein inducing the Ca2+-channel conductivity of bilayer lipid membranes].
    Kostiuk PG; Kurskiĭ MD; Vorobets ZD; Sokolov IuV
    Dokl Akad Nauk SSSR; 1984; 274(3):764-8. PubMed ID: 6323121
    [No Abstract]   [Full Text] [Related]  

  • 18. [Role of cAMP-dependent phosphorylation in passive transport of Ca2+ by myocardial sarcolemma].
    Vorobets ZD; Kurskiĭ MD; Marchenko SN
    Biokhimiia; 1983 Jun; 48(6):1020-4. PubMed ID: 6309254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-transporters in myocardial cells.
    Subramani S; Subbanna PK
    Indian J Physiol Pharmacol; 2006; 50(2):99-113. PubMed ID: 17051729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury.
    Wang S; Radhakrishnan J; Ayoub IM; Kolarova JD; Taglieri DM; Gazmuri RJ
    J Appl Physiol (1985); 2007 Jul; 103(1):55-65. PubMed ID: 17431086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.