These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 2158928)
1. High-level synthesis of recombinant HIV-1 protease and the recovery of active enzyme from inclusion bodies. Cheng YS; McGowan MH; Kettner CA; Schloss JV; Erickson-Viitanen S; Yin FH Gene; 1990 Mar; 87(2):243-8. PubMed ID: 2158928 [TBL] [Abstract][Full Text] [Related]
2. Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from Escherichia coli. Strickler JE; Gorniak J; Dayton B; Meek T; Moore M; Magaard V; Malinowski J; Debouck C Proteins; 1989; 6(2):139-54. PubMed ID: 2695927 [TBL] [Abstract][Full Text] [Related]
4. Substrate analogue inhibition and active site titration of purified recombinant HIV-1 protease. Tomasselli AG; Olsen MK; Hui JO; Staples DJ; Sawyer TK; Heinrikson RL; Tomich CS Biochemistry; 1990 Jan; 29(1):264-9. PubMed ID: 2182116 [TBL] [Abstract][Full Text] [Related]
5. Expression and purification of active form of HIV-1 protease from E.coli. Wan M; Loh BN Biochem Mol Biol Int; 1995 Apr; 35(4):899-912. PubMed ID: 7627139 [TBL] [Abstract][Full Text] [Related]
6. High-level expression of self-processed HIV-1 protease in Escherichia coli using a synthetic gene. Hostomsky Z; Appelt K; Ogden RC Biochem Biophys Res Commun; 1989 Jun; 161(3):1056-63. PubMed ID: 2662971 [TBL] [Abstract][Full Text] [Related]
7. Crystallizable HIV-1 protease derived from expression of the viral pol gene in Escherichia coli. Danley DE; Geoghegan KF; Scheld KG; Lee SE; Merson JR; Hawrylik SJ; Rickett GA; Ammirati MJ; Hobart PM Biochem Biophys Res Commun; 1989 Dec; 165(3):1043-50. PubMed ID: 2692557 [TBL] [Abstract][Full Text] [Related]
8. Purification and biochemical characterization of recombinant simian immunodeficiency virus protease and comparison to human immunodeficiency virus type 1 protease. Grant SK; Deckman IC; Minnich MD; Culp J; Franklin S; Dreyer GB; Tomaszek TA; Debouck C; Meek TD Biochemistry; 1991 Aug; 30(34):8424-34. PubMed ID: 1883829 [TBL] [Abstract][Full Text] [Related]
10. Affinity purification of HIV-1 and HIV-2 proteases from recombinant E. coli strains using pepstatin-agarose. Rittenhouse J; Turon MC; Helfrich RJ; Albrecht KS; Weigl D; Simmer RL; Mordini F; Erickson J; Kohlbrenner WE Biochem Biophys Res Commun; 1990 Aug; 171(1):60-6. PubMed ID: 2203350 [TBL] [Abstract][Full Text] [Related]
11. Organization of HIV-1 pol is critical for Pol polyprotein processing. Chang YY; Yu SL; Syu WJ J Biomed Sci; 1999; 6(5):333-41. PubMed ID: 10494040 [TBL] [Abstract][Full Text] [Related]
12. Large scale purification and refolding of HIV-1 protease from Escherichia coli inclusion bodies. Hui JO; Tomasselli AG; Reardon IM; Lull JM; Brunner DP; Tomich CS; Heinrikson RL J Protein Chem; 1993 Jun; 12(3):323-7. PubMed ID: 8397790 [TBL] [Abstract][Full Text] [Related]
13. High-level production of active HIV-1 protease in Escherichia coli. Rangwala SH; Finn RF; Smith CE; Berberich SA; Salsgiver WJ; Stallings WC; Glover GI; Olins PO Gene; 1992 Dec; 122(2):263-9. PubMed ID: 1487142 [TBL] [Abstract][Full Text] [Related]
14. Optimized Procedure for Recovering HIV-1 Protease (C-SA) from Inclusion Bodies. Maseko SB; Govender D; Govender T; Naicker T; Lin J; Maguire GEM; Kruger HG Protein J; 2019 Feb; 38(1):30-36. PubMed ID: 30666487 [TBL] [Abstract][Full Text] [Related]
15. HIV-1 protease: mutagenesis of asparagine 88 indicates a domain required for dimer formation. Guenet C; Leppik RA; Pelton JT; Moelling K; Lovenberg W; Harris BA Eur J Pharmacol; 1989 Dec; 172(6):443-51. PubMed ID: 2693124 [TBL] [Abstract][Full Text] [Related]
16. Substitutions at the P2' site of gag p17-p24 affect cleavage efficiency by HIV-1 protease. Margolin N; Heath W; Osborne E; Lai M; Vlahos C Biochem Biophys Res Commun; 1990 Mar; 167(2):554-60. PubMed ID: 2182016 [TBL] [Abstract][Full Text] [Related]
17. Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies. Maseko SB; Natarajan S; Sharma V; Bhattacharyya N; Govender T; Sayed Y; Maguire GE; Lin J; Kruger HG Protein Expr Purif; 2016 Jun; 122():90-6. PubMed ID: 26917227 [TBL] [Abstract][Full Text] [Related]
18. Two-Step Preparation of Highly Pure, Soluble HIV Protease from Inclusion Bodies Recombinantly Expressed in Escherichia coli. Sherry D; Worth R; Sayed Y Curr Protoc Protein Sci; 2020 Jun; 100(1):e106. PubMed ID: 32339408 [TBL] [Abstract][Full Text] [Related]
19. An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies. Nguyen HL; Nguyen TT; Vu QT; Le HT; Pham Y; Trinh PL; Bui TP; Phan TN Protein Expr Purif; 2015 Dec; 116():59-65. PubMed ID: 26231073 [TBL] [Abstract][Full Text] [Related]
20. Identification of a human immunodeficiency virus-1 protease cleavage site within the 66,000 Dalton subunit of reverse transcriptase. Graves MC; Meidel MC; Pan YC; Manneberg M; Lahm HW; Grüninger-Leitch F Biochem Biophys Res Commun; 1990 Apr; 168(1):30-6. PubMed ID: 1691640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]