These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 21589849)
1. Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection. Bradic J; Fan J; Wang W J R Stat Soc Series B Stat Methodol; 2011 Jun; 73(3):325-349. PubMed ID: 21589849 [TBL] [Abstract][Full Text] [Related]
2. Non-Concave Penalized Likelihood with NP-Dimensionality. Fan J; Lv J IEEE Trans Inf Theory; 2011 Aug; 57(8):5467-5484. PubMed ID: 22287795 [TBL] [Abstract][Full Text] [Related]
3. ADAPTIVE ROBUST VARIABLE SELECTION. Fan J; Fan Y; Barut E Ann Stat; 2014 Feb; 42(1):324-351. PubMed ID: 25580039 [TBL] [Abstract][Full Text] [Related]
4. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications. Huang J; Zhang CH J Mach Learn Res; 2012 Jun; 13():1839-1864. PubMed ID: 24348100 [TBL] [Abstract][Full Text] [Related]
5. Penalized weighted smoothed quantile regression for high-dimensional longitudinal data. Song Y; Han H; Fu L; Wang T Stat Med; 2024 May; 43(10):2007-2042. PubMed ID: 38634309 [TBL] [Abstract][Full Text] [Related]
6. Robust learning for optimal treatment decision with NP-dimensionality. Shi C; Song R; Lu W Electron J Stat; 2016; 10():2894-2921. PubMed ID: 28781717 [TBL] [Abstract][Full Text] [Related]
7. M-estimation in high-dimensional linear model. Wang K; Zhu Y J Inequal Appl; 2018; 2018(1):225. PubMed ID: 30839615 [TBL] [Abstract][Full Text] [Related]
8. Regularized Quantile Regression and Robust Feature Screening for Single Index Models. Zhong W; Zhu L; Li R; Cui H Stat Sin; 2016 Jan; 26(1):69-95. PubMed ID: 26941542 [TBL] [Abstract][Full Text] [Related]
9. Designing penalty functions in high dimensional problems: The role of tuning parameters. Chen TH; Sun W; Fine JP Electron J Stat; 2016; 10(2):2312-2328. PubMed ID: 28989558 [TBL] [Abstract][Full Text] [Related]
10. Variable selection and estimation in generalized linear models with the seamless Li Z; Wang S; Lin X Can J Stat; 2012 Dec; 40(4):745-769. PubMed ID: 23519603 [TBL] [Abstract][Full Text] [Related]
11. Variable selection for ultra-high dimensional quantile regression with missing data and measurement error. Bai Y; Tian M; Tang ML; Lee WY Stat Methods Med Res; 2021 Jan; 30(1):129-150. PubMed ID: 32746735 [TBL] [Abstract][Full Text] [Related]
12. Partial Consistency with Sparse Incidental Parameters. Fan J; Tang R; Shi X Stat Sin; 2018 May; 28():2633-2655. PubMed ID: 31607773 [TBL] [Abstract][Full Text] [Related]
13. Penalized Empirical Likelihood for the Sparse Cox Regression Model. Wang D; Wu TT; Zhao Y J Stat Plan Inference; 2019 Jul; 201():71-85. PubMed ID: 31588162 [TBL] [Abstract][Full Text] [Related]
14. On the robustness of the adaptive lasso to model misspecification. Lu W; Goldberg Y; Fine JP Biometrika; 2012 Sep; 99(3):717-731. PubMed ID: 25294946 [TBL] [Abstract][Full Text] [Related]
15. Group variable selection via convex log-exp-sum penalty with application to a breast cancer survivor study. Geng Z; Wang S; Yu M; Monahan PO; Champion V; Wahba G Biometrics; 2015 Mar; 71(1):53-62. PubMed ID: 25257196 [TBL] [Abstract][Full Text] [Related]
16. Penalized and constrained LAD estimation in fixed and high dimension. Wu X; Liang R; Yang H Stat Pap (Berl); 2022; 63(1):53-95. PubMed ID: 33814727 [TBL] [Abstract][Full Text] [Related]
17. Variable Selection for Screening Experiments. Li R; Lin DK Qual Technol Quant Manag; 2009; 6(3):271-280. PubMed ID: 20668639 [TBL] [Abstract][Full Text] [Related]
18. Scalable Bayesian Variable Selection Using Nonlocal Prior Densities in Ultrahigh-dimensional Settings. Shin M; Bhattacharya A; Johnson VE Stat Sin; 2018 Apr; 28(2):1053-1078. PubMed ID: 29643721 [TBL] [Abstract][Full Text] [Related]
19. Robust Variable Selection with Exponential Squared Loss. Wang X; Jiang Y; Huang M; Zhang H J Am Stat Assoc; 2013 Apr; 108(502):632-643. PubMed ID: 23913996 [TBL] [Abstract][Full Text] [Related]
20. A few theoretical results for Laplace and arctan penalized ordinary least squares linear regression estimators. John M; Vettam S Commun Stat Theory Methods; 2024; 53(13):4819-4840. PubMed ID: 38895616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]