BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21589859)

  • 1. Deficiency of the mitochondrial electron transport chain in muscle does not cause insulin resistance.
    Han DH; Hancock CR; Jung SR; Higashida K; Kim SH; Holloszy JO
    PLoS One; 2011 May; 6(5):e19739. PubMed ID: 21589859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats.
    Bonen A; Jain SS; Snook LA; Han XX; Yoshida Y; Buddo KH; Lally JS; Pask ED; Paglialunga S; Beaudoin MS; Glatz JF; Luiken JJ; Harasim E; Wright DC; Chabowski A; Holloway GP
    Diabetologia; 2015 Oct; 58(10):2381-91. PubMed ID: 26197708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of skeletal muscle leptin response does not precede the exercise-induced recovery of insulin-stimulated glucose uptake in high-fat-fed rats.
    Ritchie IR; Gulli RA; Stefanyk LE; Harasim E; Chabowski A; Dyck DJ
    Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R492-500. PubMed ID: 21084675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance.
    Holloway GP; Chou CJ; Lally J; Stellingwerff T; Maher AC; Gavrilova O; Haluzik M; Alkhateeb H; Reitman ML; Bonen A
    Diabetologia; 2011 Jun; 54(6):1457-67. PubMed ID: 21442160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats.
    Bonen A; Holloway GP; Tandon NN; Han XX; McFarlan J; Glatz JF; Luiken JJ
    Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R1202-12. PubMed ID: 19675275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent: potent tissue-specific effects of medium-chain fatty acids.
    Turner N; Hariharan K; TidAng J; Frangioudakis G; Beale SM; Wright LE; Zeng XY; Leslie SJ; Li JY; Kraegen EW; Cooney GJ; Ye JM
    Diabetes; 2009 Nov; 58(11):2547-54. PubMed ID: 19720794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance.
    Hoeks J; Wilde Jd; Hulshof MF; Berg SA; Schaart G; Dijk KW; Smit E; Mariman EC
    PLoS One; 2011; 6(11):e27274. PubMed ID: 22140436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin resistance of muscle glucose transport in rats fed a high-fat diet: a reevaluation.
    Han DH; Hansen PA; Host HH; Holloszy JO
    Diabetes; 1997 Nov; 46(11):1761-7. PubMed ID: 9356023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity.
    Timmers S; Nabben M; Bosma M; van Bree B; Lenaers E; van Beurden D; Schaart G; Westerterp-Plantenga MS; Langhans W; Hesselink MK; Schrauwen-Hinderling VB; Schrauwen P
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11711-6. PubMed ID: 22753483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression.
    Amorim PA; Nguyen TD; Shingu Y; Schwarzer M; Mohr FW; Schrepper A; Doenst T
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1160-7. PubMed ID: 20850803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid transport protein 1 (FATP1) localizes in mitochondria in mouse skeletal muscle and regulates lipid and ketone body disposal.
    Guitart M; Osorio-Conles O; Pentinat T; Cebrià J; García-Villoria J; Sala D; Sebastián D; Zorzano A; Ribes A; Jiménez-Chillarón JC; García-Martínez C; Gómez-Foix AM
    PLoS One; 2014; 9(5):e98109. PubMed ID: 24858472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid β-oxidation.
    Tucci S; Herebian D; Sturm M; Seibt A; Spiekerkoetter U
    PLoS One; 2012; 7(9):e45429. PubMed ID: 23024820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1alpha) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats.
    Benton CR; Holloway GP; Han XX; Yoshida Y; Snook LA; Lally J; Glatz JF; Luiken JJ; Chabowski A; Bonen A
    Diabetologia; 2010 Sep; 53(9):2008-19. PubMed ID: 20490453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral administration of a PPAR-delta agonist to rodents worsens, not improves, maximal insulin-stimulated glucose transport in skeletal muscle of different fibers.
    Cresser J; Bonen A; Chabowski A; Stefanyk LE; Gulli R; Ritchie I; Dyck DJ
    Am J Physiol Regul Integr Comp Physiol; 2010 Aug; 299(2):R470-9. PubMed ID: 20538899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance.
    Zhang D; Liu ZX; Choi CS; Tian L; Kibbey R; Dong J; Cline GW; Wood PA; Shulman GI
    Proc Natl Acad Sci U S A; 2007 Oct; 104(43):17075-80. PubMed ID: 17940018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.
    Koves TR; Ussher JR; Noland RC; Slentz D; Mosedale M; Ilkayeva O; Bain J; Stevens R; Dyck JR; Newgard CB; Lopaschuk GD; Muoio DM
    Cell Metab; 2008 Jan; 7(1):45-56. PubMed ID: 18177724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial β-oxidation.
    Chen LL; Zhang HH; Zheng J; Hu X; Kong W; Hu D; Wang SX; Zhang P
    Metabolism; 2011 Nov; 60(11):1598-609. PubMed ID: 21632075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic ablation of calcium-independent phospholipase A2gamma prevents obesity and insulin resistance during high fat feeding by mitochondrial uncoupling and increased adipocyte fatty acid oxidation.
    Mancuso DJ; Sims HF; Yang K; Kiebish MA; Su X; Jenkins CM; Guan S; Moon SH; Pietka T; Nassir F; Schappe T; Moore K; Han X; Abumrad NA; Gross RW
    J Biol Chem; 2010 Nov; 285(47):36495-510. PubMed ID: 20817734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction of insulin-resistant muscle normalizes insulin action in association with increased mitochondrial activity and fatty acid catabolism.
    Thyfault JP; Cree MG; Zheng D; Zwetsloot JJ; Tapscott EB; Koves TR; Ilkayeva O; Wolfe RR; Muoio DM; Dohm GL
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C729-39. PubMed ID: 17050616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.