BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21589881)

  • 1. Multiple aggregates and aggresomes of C-terminal truncated human αA-crystallins in mammalian cells and protection by αB-crystallin.
    Raju I; Kumarasamy A; Abraham EC
    PLoS One; 2011 May; 6(5):e19876. PubMed ID: 21589881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Congenital cataract causing mutants of αA-crystallin/sHSP form aggregates and aggresomes degraded through ubiquitin-proteasome pathway.
    Raju I; Abraham EC
    PLoS One; 2011; 6(11):e28085. PubMed ID: 22140512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins.
    Tiwary E; Hegde S; Purushotham S; Deivanayagam C; Srivastava O
    PLoS One; 2015; 10(12):e0144621. PubMed ID: 26657544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confocal fluorescence resonance energy transfer microscopy study of protein-protein interactions of lens crystallins in living cells.
    Liu BF; Anbarasu K; Liang JJ
    Mol Vis; 2007 Jun; 13():854-61. PubMed ID: 17615546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal fluorescence microscopy study of interaction between lens MIP26/AQP0 and crystallins in living cells.
    Liu BF; Liang JJ
    J Cell Biochem; 2008 May; 104(1):51-8. PubMed ID: 18004741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of interaction sites between human betaA3- and alphaA/alphaB-crystallins by mammalian two-hybrid and fluorescence resonance energy transfer acceptor photobleaching methods.
    Gupta R; Srivastava OP
    J Biol Chem; 2009 Jul; 284(27):18481-92. PubMed ID: 19401464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in human αA-crystallin/sHSP affect subunit exchange interaction with αB-crystallin.
    Raju I; Oonthonpan L; Abraham EC
    PLoS One; 2012; 7(2):e31421. PubMed ID: 22347476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomerization with wt αA- and αB-crystallins reduces proteasome-mediated degradation of C-terminally truncated αA-crystallin.
    Wu M; Zhang X; Bian Q; Taylor A; Liang JJ; Ding L; Horwitz J; Shang F
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2541-50. PubMed ID: 22427585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermolecular exchange and stabilization of recombinant human alphaA- and alphaB-crystallin.
    Sun TX; Liang JJ
    J Biol Chem; 1998 Jan; 273(1):286-90. PubMed ID: 9417077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential protective activity of alpha A- and alphaB-crystallin in lens epithelial cells.
    Andley UP; Song Z; Wawrousek EF; Fleming TP; Bassnett S
    J Biol Chem; 2000 Nov; 275(47):36823-31. PubMed ID: 10967101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of protein-protein interactions among lens crystallins in a mammalian two-hybrid system assay.
    Fu L; Liang JJ
    J Biol Chem; 2002 Feb; 277(6):4255-60. PubMed ID: 11700327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational and functional differences between recombinant human lens alphaA- and alphaB-crystallin.
    Sun TX; Das BK; Liang JJ
    J Biol Chem; 1997 Mar; 272(10):6220-5. PubMed ID: 9045637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro dephosphorylation of alpha-crystallin is dependent on the state of oligomerization.
    Moroni M; Garland D
    Biochim Biophys Acta; 2001 Apr; 1546(2):282-90. PubMed ID: 11295434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-protein interactions involving congenital cataract T5P gammaC-crystallin mutant: a confocal fluorescence microscopy study.
    Liu BF; Song S; Hanson M; Liang JJ
    Exp Eye Res; 2008 Dec; 87(6):515-20. PubMed ID: 18926820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-Terminal truncation affects subunit exchange of human alphaA-crystallin with alphaB-crystallin.
    Kallur LS; Aziz A; Abraham EC
    Mol Cell Biochem; 2008 Jan; 308(1-2):85-91. PubMed ID: 17909943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional properties of NH(2)-terminal domain, core domain, and COOH-terminal extension of αA- and αB-crystallins.
    Asomugha CO; Gupta R; Srivastava OP
    Mol Vis; 2011; 17():2356-67. PubMed ID: 21921988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat-induced conformational change of human lens recombinant alphaA- and alphaB-crystallins.
    Liang JJ; Sun TX; Akhtar NJ
    Mol Vis; 2000 Mar; 6():10-4. PubMed ID: 10706895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses.
    Thampi P; Hassan A; Smith JB; Abraham EC
    Invest Ophthalmol Vis Sci; 2002 Oct; 43(10):3265-72. PubMed ID: 12356833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subunit exchange of lens alpha-crystallin: a fluorescence energy transfer study with the fluorescent labeled alphaA-crystallin mutant W9F as a probe.
    Sun TX; Akhtar NJ; Liang JJ
    FEBS Lett; 1998 Jul; 430(3):401-4. PubMed ID: 9688580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.