These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 21589888)

  • 1. An imperfect dopaminergic error signal can drive temporal-difference learning.
    Potjans W; Diesmann M; Morrison A
    PLoS Comput Biol; 2011 May; 7(5):e1001133. PubMed ID: 21589888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticipatory reward signals in ventral striatal neurons of behaving rats.
    Khamassi M; Mulder AB; Tabuchi E; Douchamps V; Wiener SI
    Eur J Neurosci; 2008 Nov; 28(9):1849-66. PubMed ID: 18973599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to express reward prediction error-like dopaminergic activity requires plastic representations of time.
    Cone I; Clopath C; Shouval HZ
    Nat Commun; 2024 Jul; 15(1):5856. PubMed ID: 38997276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spiking neural network model of an actor-critic learning agent.
    Potjans W; Morrison A; Diesmann M
    Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine.
    Morita K; Kawaguchi Y
    Front Neural Circuits; 2018; 12():111. PubMed ID: 30687019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional requirements for reward-modulated spike-timing-dependent plasticity.
    Frémaux N; Sprekeler H; Gerstner W
    J Neurosci; 2010 Oct; 30(40):13326-37. PubMed ID: 20926659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus representation and the timing of reward-prediction errors in models of the dopamine system.
    Ludvig EA; Sutton RS; Kehoe EJ
    Neural Comput; 2008 Dec; 20(12):3034-54. PubMed ID: 18624657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spiking neural model for stable reinforcement of synapses based on multiple distal rewards.
    O'Brien MJ; Srinivasa N
    Neural Comput; 2013 Jan; 25(1):123-56. PubMed ID: 23020112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striatal action-learning based on dopamine concentration.
    Morris G; Schmidt R; Bergman H
    Exp Brain Res; 2010 Jan; 200(3-4):307-17. PubMed ID: 19904530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.
    Chadderdon GL; Neymotin SA; Kerr CC; Lytton WW
    PLoS One; 2012; 7(10):e47251. PubMed ID: 23094042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of heterogeneous dopamine signaling in an insect learning and memory center.
    Jiang L; Litwin-Kumar A
    PLoS Comput Biol; 2021 Aug; 17(8):e1009205. PubMed ID: 34375329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving the distal reward problem with rare correlations.
    Soltoggio A; Steil JJ
    Neural Comput; 2013 Apr; 25(4):940-78. PubMed ID: 23339615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: a simulated robotic study.
    Mirolli M; Santucci VG; Baldassarre G
    Neural Netw; 2013 Mar; 39():40-51. PubMed ID: 23353115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine reward prediction error coding.
    Schultz W
    Dialogues Clin Neurosci; 2016 Mar; 18(1):23-32. PubMed ID: 27069377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive reward signal of dopamine neurons.
    Schultz W
    J Neurophysiol; 1998 Jul; 80(1):1-27. PubMed ID: 9658025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational substrate for incentive salience.
    McClure SM; Daw ND; Montague PR
    Trends Neurosci; 2003 Aug; 26(8):423-8. PubMed ID: 12900173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.