These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21589934)

  • 1. Water contamination reduces the tolerance of coral larvae to thermal stress.
    Negri AP; Hoogenboom MO
    PLoS One; 2011 May; 6(5):e19703. PubMed ID: 21589934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of larval swimming activity of the coral (Platygyra acuta) by interactive thermal and chemical stresses.
    Kwok CK; Ang PO
    Mar Pollut Bull; 2013 Sep; 74(1):264-73. PubMed ID: 23871203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated temperatures reduce the resilience of the Red Sea branching coral stylophora pistillata to copper pollution.
    Banc-Prandi G; Baharier N; Benaltabet T; Torfstein A; Antler G; Fine M
    Aquat Toxicol; 2022 Mar; 244():106096. PubMed ID: 35101775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated Temperature and Allelopathy Impact Coral Recruitment.
    Ritson-Williams R; Ross C; Paul VJ
    PLoS One; 2016; 11(12):e0166581. PubMed ID: 27926916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change impacts on coral reefs: synergies with local effects, possibilities for acclimation, and management implications.
    Ateweberhan M; Feary DA; Keshavmurthy S; Chen A; Schleyer MH; Sheppard CR
    Mar Pollut Bull; 2013 Sep; 74(2):526-39. PubMed ID: 23816307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing coral recruitment through assisted mass settlement of cultured coral larvae.
    Dela Cruz DW; Harrison PL
    PLoS One; 2020; 15(11):e0242847. PubMed ID: 33232367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress.
    Drury C
    Mol Ecol; 2020 Feb; 29(3):448-465. PubMed ID: 31845413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae.
    Webster NS; Soo R; Cobb R; Negri AP
    ISME J; 2011 Apr; 5(4):759-70. PubMed ID: 20944682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs.
    Cruz DWD; Harrison PL
    Sci Rep; 2017 Oct; 7(1):13985. PubMed ID: 29070842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coral reef refuge in the Red Sea.
    Fine M; Gildor H; Genin A
    Glob Chang Biol; 2013 Dec; 19(12):3640-7. PubMed ID: 23959950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mosquito control pesticides and sea surface temperatures have differential effects on the survival and oxidative stress response of coral larvae.
    Ross C; Olsen K; Henry M; Pierce R
    Ecotoxicology; 2015 Apr; 24(3):540-52. PubMed ID: 25527297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tolerance to Elevated Temperature and Ocean Acidification of the Larvae of the Solitary Corals Fungia fungites (Linnaues, 1758) and Lithophyllon repanda (Dana, 1846).
    Baria MV; Kurihara H; Harii S
    Zoolog Sci; 2015 Oct; 32(5):447-54. PubMed ID: 26428722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of resistant larvae of the coral Acropora tenuis to future thermal stress.
    Hazraty-Kari S; Morita M; Tavakoli-Kolour P; Harii S
    Mar Pollut Bull; 2023 Jul; 192():115060. PubMed ID: 37207392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper.
    Negri AP; Heyward AJ
    Mar Environ Res; 2001 Feb; 51(1):17-27. PubMed ID: 11125701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal tolerances of reef corals in the Gulf: a review of the potential for increasing coral survival and adaptation to climate change through assisted translocation.
    Coles SL; Riegl BM
    Mar Pollut Bull; 2013 Jul; 72(2):323-32. PubMed ID: 23058810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework.
    Fabricius KE; Cséke S; Humphrey C; De'ath G
    PLoS One; 2013; 8(1):e54399. PubMed ID: 23349876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bioenergetics response of the coral Pocillopora damicornis to temperature changes during its reproduction stage.
    Liu C; Zhang Y; Botana MT; Fu Y; Huang L; Jiang L; Yu X; Luo Y; Huang H
    Mar Environ Res; 2024 Jun; 198():106557. PubMed ID: 38823094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interactive impacts of a constant reef stressor, ultraviolet radiation, with environmental stressors on coral physiology.
    Downie AT; Cramp RL; Franklin CE
    Sci Total Environ; 2024 Jan; 907():168066. PubMed ID: 37890630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of cellular diagnostics for identifying sub-lethal stress in reef corals.
    Downs CA; Ostrander GK; Rougee L; Rongo T; Knutson S; Williams DE; Mendiola W; Holbrook J; Richmond RH
    Ecotoxicology; 2012 Apr; 21(3):768-82. PubMed ID: 22215560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resilience potential of an Indian Ocean reef: an assessment through coral recruitment pattern and survivability of juvenile corals to recurrent stress events.
    Manikandan B; Ravindran J; Vidya PJ; Shrinivasu S; Manimurali R; Paramasivam K
    Environ Sci Pollut Res Int; 2017 May; 24(15):13614-13625. PubMed ID: 28391465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.