BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21589976)

  • 21. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles.
    Liang X; Wei H; Cui Z; Deng J; Zhang Z; You X; Zhang XE
    Analyst; 2011 Jan; 136(1):179-83. PubMed ID: 20877886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synchronous fluorescence determination of mercury ion with glutathione-capped CdS nanoparticles as a fluorescence probe.
    Liang AN; Wang L; Chen HQ; Qian BB; Ling B; Fu J
    Talanta; 2010 Apr; 81(1-2):438-43. PubMed ID: 20188943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supramolecular interaction of cucurbit[n]urils and coptisine by spectrofluorimetry and its analytical application.
    Li CF; Du LM; Wu WY; Sheng AZ
    Talanta; 2010 Mar; 80(5):1939-44. PubMed ID: 20152436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subpicogram determination of melamine in milk products using a luminol-myoglobin chemiluminescence system.
    Wang Z; Chen D; Gao X; Song Z
    J Agric Food Chem; 2009 May; 57(9):3464-9. PubMed ID: 19334785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion.
    Huang KW; Yu CJ; Tseng WL
    Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical determination of melamine using oligonucleotides modified gold electrodes.
    Cao Q; Zhao H; Zeng L; Wang J; Wang R; Qiu X; He Y
    Talanta; 2009 Dec; 80(2):484-8. PubMed ID: 19836508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen-bonding-induced colorimetric detection of melamine by nonaggregation-based Au-NPs as a probe.
    Cao Q; Zhao H; He Y; Li X; Zeng L; Ding N; Wang J; Yang J; Wang G
    Biosens Bioelectron; 2010 Aug; 25(12):2680-5. PubMed ID: 20510598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection.
    Chen Z; Yan X
    J Agric Food Chem; 2009 Oct; 57(19):8742-7. PubMed ID: 19761188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of melamine in different milk batches using a novel chemosensor based on the luminescence quenching of Ru(II) carbonyl complex.
    Attia MS; Bakir E; Abdel-aziz AA; Abdel-mottaleb MS
    Talanta; 2011 Mar; 84(1):27-33. PubMed ID: 21315893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual and Optical Absorbance Detection of Melamine in Milk by Melamine-Induced Aggregation of Gold Nanoparticles.
    Siddiquee S; Saallah S; Bohari NA; Ringgit G; Roslan J; Naher L; Hasan Nudin NF
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33924923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sensitive spectrofluorimetric method for the quantification of melamine residue in milk powder using the Mannich reaction in aqueous solutions.
    Rima J; Assaker K; El Omar F; karim Cb
    Talanta; 2013 Nov; 116():277-82. PubMed ID: 24148404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid analysis of melamine in infant formula by sweeping-micellar electrokinetic chromatography.
    Tsai IL; Sun SW; Liao HW; Lin SC; Kuo CH
    J Chromatogr A; 2009 Nov; 1216(47):8296-303. PubMed ID: 19560775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crown ether assembly of gold nanoparticles: melamine sensor.
    Kuang H; Chen W; Yan W; Xu L; Zhu Y; Liu L; Chu H; Peng C; Wang L; Kotov NA; Xu C
    Biosens Bioelectron; 2011 Jan; 26(5):2032-7. PubMed ID: 20884195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fluorescence characteristic of the yttrium-norfloxacin system and its analytical application.
    Han Y; Wu X; Yang J; Sun S
    J Pharm Biomed Anal; 2005 Jul; 38(3):528-31. PubMed ID: 15925255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography-tandem mass spectrometry.
    Ibáñez M; Sancho JV; Hernández F
    Anal Chim Acta; 2009 Sep; 649(1):91-7. PubMed ID: 19664467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder.
    Balabin RM; Smirnov SV
    Talanta; 2011 Jul; 85(1):562-8. PubMed ID: 21645742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical sensing of melamine with 3,4-dihydroxyphenylacetic acid as recognition element.
    Cao Q; Zhao H; He Y; Ding N; Wang J
    Anal Chim Acta; 2010 Aug; 675(1):24-8. PubMed ID: 20708111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple spectrophotocolorimetric method for quantitative determination of gold in nanoparticles.
    Tournebize J; Sapin-Minet A; Schneider R; Boudier A; Maincent P; Leroy P
    Talanta; 2011 Feb; 83(5):1780-3. PubMed ID: 21238784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry.
    Yang S; Ding J; Zheng J; Hu B; Li J; Chen H; Zhou Z; Qiao X
    Anal Chem; 2009 Apr; 81(7):2426-36. PubMed ID: 19265404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of melamine residues in milk products by zirconia hollow fiber sorptive microextraction and gas chromatography-mass spectrometry.
    Li J; Qi HY; Shi YP
    J Chromatogr A; 2009 Jul; 1216(29):5467-71. PubMed ID: 19535086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.