These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 21590414)
1. Fusarium graminearum from expression analysis to functional assays. Hallen-Adams HE; Cavinder BL; Trail F Methods Mol Biol; 2011; 722():79-101. PubMed ID: 21590414 [TBL] [Abstract][Full Text] [Related]
2. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Güldener U; Seong KY; Boddu J; Cho S; Trail F; Xu JR; Adam G; Mewes HW; Muehlbauer GJ; Kistler HC Fungal Genet Biol; 2006 May; 43(5):316-25. PubMed ID: 16531083 [TBL] [Abstract][Full Text] [Related]
3. The transcriptome of Fusarium graminearum during the infection of wheat. Lysøe E; Seong KY; Kistler HC Mol Plant Microbe Interact; 2011 Sep; 24(9):995-1000. PubMed ID: 21585270 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and -susceptible alleles. Jia H; Cho S; Muehlbauer GJ Mol Plant Microbe Interact; 2009 Nov; 22(11):1366-78. PubMed ID: 19810806 [TBL] [Abstract][Full Text] [Related]
5. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Ilgen P; Hadeler B; Maier FJ; Schäfer W Mol Plant Microbe Interact; 2009 Aug; 22(8):899-908. PubMed ID: 19589066 [TBL] [Abstract][Full Text] [Related]
6. A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. Wang Y; Liu W; Hou Z; Wang C; Zhou X; Jonkers W; Ding S; Kistler HC; Xu JR Mol Plant Microbe Interact; 2011 Jan; 24(1):118-28. PubMed ID: 20795857 [TBL] [Abstract][Full Text] [Related]
7. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
8. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Li Y; Wang C; Liu W; Wang G; Kang Z; Kistler HC; Xu JR Mol Plant Microbe Interact; 2011 Apr; 24(4):487-96. PubMed ID: 21138346 [TBL] [Abstract][Full Text] [Related]
9. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts. Balcerzak M; Harris LJ; Subramaniam R; Ouellet T Fungal Biol; 2012 Apr; 116(4):478-88. PubMed ID: 22483046 [TBL] [Abstract][Full Text] [Related]
10. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Harris LJ; Balcerzak M; Johnston A; Schneiderman D; Ouellet T Fungal Biol; 2016 Jan; 120(1):111-23. PubMed ID: 26693688 [TBL] [Abstract][Full Text] [Related]
11. Development of a specific TaqMan real-time PCR assay for quantification of Fusarium graminearum clade 7 and comparison of fungal biomass determined by PCR with deoxynivalenol content in wheat and barley. Demeke T; Gräfenhan T; Clear RM; Phan A; Ratnayaka I; Chapados J; Patrick SK; Gaba D; Lévesque CA; Seifert KA Int J Food Microbiol; 2010 Jun; 141(1-2):45-50. PubMed ID: 20483187 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions. Lu S; Edwards MC Phytopathology; 2016 Feb; 106(2):166-76. PubMed ID: 26524547 [TBL] [Abstract][Full Text] [Related]
13. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
14. Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Hallen HE; Huebner M; Shiu SH; Güldener U; Trail F Fungal Genet Biol; 2007 Nov; 44(11):1146-56. PubMed ID: 17555994 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of the barley-Fusarium graminearum interaction. Boddu J; Cho S; Kruger WM; Muehlbauer GJ Mol Plant Microbe Interact; 2006 Apr; 19(4):407-17. PubMed ID: 16610744 [TBL] [Abstract][Full Text] [Related]
16. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum. Lu S; Edwards MC Phytopathology; 2018 Apr; 108(4):510-520. PubMed ID: 29117786 [TBL] [Abstract][Full Text] [Related]
17. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum. Perochon A; Jianguang J; Kahla A; Arunachalam C; Scofield SR; Bowden S; Wallington E; Doohan FM Plant Physiol; 2015 Dec; 169(4):2895-906. PubMed ID: 26508775 [TBL] [Abstract][Full Text] [Related]
18. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett. Yang F; Jensen JD; Svensson B; Jørgensen HJ; Collinge DB; Finnie C Proteomics; 2010 Nov; 10(21):3748-55. PubMed ID: 20925056 [TBL] [Abstract][Full Text] [Related]
19. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Josefsen L; Droce A; Sondergaard TE; Sørensen JL; Bormann J; Schäfer W; Giese H; Olsson S Autophagy; 2012 Mar; 8(3):326-37. PubMed ID: 22240663 [TBL] [Abstract][Full Text] [Related]
20. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. O'Donnell K; Ward TJ; Aberra D; Kistler HC; Aoki T; Orwig N; Kimura M; Bjørnstad S; Klemsdal SS Fungal Genet Biol; 2008 Nov; 45(11):1514-22. PubMed ID: 18824240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]