These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21590915)

  • 1. Studying and Suppressing Olefin Isomerization Side Reactions During ADMET Polymerizations.
    Fokou PA; Meier MA
    Macromol Rapid Commun; 2010 Feb; 31(4):368-73. PubMed ID: 21590915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations.
    Mutlu H; Montero de Espinosa L; Türünç O; Meier MA
    Beilstein J Org Chem; 2010 Dec; 6():1149-58. PubMed ID: 21160555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a renewable and degradable monomer to study the temperature-dependent olefin isomerization during ADMET polymerizations.
    Fokou PA; Meier MA
    J Am Chem Soc; 2009 Feb; 131(5):1664-5. PubMed ID: 19159230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESIMS studies and calculations on alkali-metal adduct ions of ruthenium olefin metathesis catalysts and their catalytic activity in metathesis reactions.
    Wang HY; Yim WL; Klüner T; Metzger JO
    Chemistry; 2009 Oct; 15(41):10948-59. PubMed ID: 19760711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation.
    Makio H; Fujita T
    Acc Chem Res; 2009 Oct; 42(10):1532-44. PubMed ID: 19588950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyclic diene metathesis with a monomer from renewable resources: control of molecular weight and one-step preparation of block copolymers.
    Rybak A; Meier MA
    ChemSusChem; 2008; 1(6):542-7. PubMed ID: 18702153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The doping effect of fluorinated aromatic solvents on the rate of ruthenium-catalysed olefin metathesis.
    Samojłowicz C; Bieniek M; Pazio A; Makal A; Woźniak K; Poater A; Cavallo L; Wójcik J; Zdanowski K; Grela K
    Chemistry; 2011 Nov; 17(46):12981-93. PubMed ID: 21956694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aliphatic long-chain C20 polyesters from olefin metathesis.
    Trzaskowski J; Quinzler D; Bährle C; Mecking S
    Macromol Rapid Commun; 2011 Sep; 32(17):1352-6. PubMed ID: 21751281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevention of undesirable isomerization during olefin metathesis.
    Hong SH; Sanders DP; Lee CW; Grubbs RH
    J Am Chem Soc; 2005 Dec; 127(49):17160-1. PubMed ID: 16332044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Well-defined silica-supported olefin metathesis catalysts.
    Allen DP; Van Wingerden MM; Grubbs RH
    Org Lett; 2009 Mar; 11(6):1261-4. PubMed ID: 19239246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and polymerization of renewable 1,3-cyclohexadiene using metathesis, isomerization, and cascade reactions with late-metal catalysts.
    Mathers RT; Shreve MJ; Meyler E; Damodaran K; Iwig DF; Kelley DJ
    Macromol Rapid Commun; 2011 Sep; 32(17):1338-42. PubMed ID: 21648003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and activity of ruthenium olefin metathesis catalysts coordinated with thiazol-2-ylidene ligands.
    Vougioukalakis GC; Grubbs RH
    J Am Chem Soc; 2008 Feb; 130(7):2234-45. PubMed ID: 18220390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scrambling reaction between polymers prepared by step-growth and chain-growth polymerizations: macromolecular cross-metathesis between 1,4-polybutadiene and olefin-containing polyester.
    Otsuka H; Muta T; Sakada M; Maeda T; Takahara A
    Chem Commun (Camb); 2009 Mar; (9):1073-5. PubMed ID: 19225640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable concepts in olefin metathesis.
    Clavier H; Grela K; Kirschning A; Mauduit M; Nolan SP
    Angew Chem Int Ed Engl; 2007; 46(36):6786-801. PubMed ID: 17640026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium-based olefin metathesis catalysts coordinated with unsymmetrical N-heterocyclic carbene ligands: synthesis, structure, and catalytic activity.
    Vougioukalakis GC; Grubbs RH
    Chemistry; 2008; 14(25):7545-56. PubMed ID: 18637651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new concept for the noncovalent binding of a ruthenium-based olefin metathesis catalyst to polymeric phases: preparation of a catalyst on Raschig rings.
    Michrowska A; Mennecke K; Kunz U; Kirschning A; Grela K
    J Am Chem Soc; 2006 Oct; 128(40):13261-7. PubMed ID: 17017807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of star- and block-copolymers using ADMET: head-to-tail selectivity during step-growth polymerization.
    Montero de Espinosa L; Meier MA
    Chem Commun (Camb); 2011 Feb; 47(6):1908-10. PubMed ID: 21135961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition of a key intermediate in ruthenium-catalyzed olefin metathesis reactions.
    Hong SH; Day MW; Grubbs RH
    J Am Chem Soc; 2004 Jun; 126(24):7414-5. PubMed ID: 15198568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Thermo- and Photo-Switchable Ruthenium Initiator For Olefin Metathesis.
    Sashuk V; Danylyuk O
    Chemistry; 2016 May; 22(19):6528-31. PubMed ID: 27004928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionality dependent olefin activity in acyclic diene metathesis polymerization: mass spectrometry characterization of amino acid functionalized olefins.
    Petkovska VI; Hopkins TE; Powell DH; Wagener KB
    Anal Chem; 2006 Jun; 78(11):3624-31. PubMed ID: 16737216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.