These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21590970)

  • 1. Poly(ferrocenylsilane) Gels and Hydrogels with Redox-Controlled Actuation.
    Hempenius MA; Cirmi C; Savio FL; Song J; Vancso GJ
    Macromol Rapid Commun; 2010 May; 31(9-10):772-83. PubMed ID: 21590970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties.
    Feng X; Zhang K; Chen P; Sui X; Hempenius MA; Liedberg B; Vancso GJ
    Macromol Rapid Commun; 2016 Dec; 37(23):1939-1944. PubMed ID: 27775202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a Rapidly Forming Poly(ferrocenylsilane)-Poly(ethylene glycol)-based Hydrogel by a Thiol-Michael Addition Click Reaction.
    Sui X; van Ingen L; Hempenius MA; Vancso GJ
    Macromol Rapid Commun; 2010 Dec; 31(23):2059-63. PubMed ID: 21567631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disassembly of redox responsive poly(ferrocenylsilane) multilayers: the effect of blocking layers, supporting electrolyte and polyion molar mass.
    Song J; Jańczewski D; Ma Y; Hempenius M; Xu J; Vancso GJ
    J Colloid Interface Sci; 2013 Sep; 405():256-61. PubMed ID: 23746683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-controlled molecular permeability of composite-wall microcapsules.
    Ma Y; Dong WF; Hempenius MA; Möhwald H; Vancso GJ
    Nat Mater; 2006 Sep; 5(9):724-9. PubMed ID: 16921362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-active cross-linkable poly(ionic liquid)s.
    Sui X; Hempenius MA; Vancso GJ
    J Am Chem Soc; 2012 Mar; 134(9):4023-5. PubMed ID: 22353019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-responsive organometallic microgel particles prepared from poly(ferrocenylsilane)s generated using microfluidics.
    Sui X; Shui L; Cui J; Xie Y; Song J; van den Berg A; Hempenius MA; Vancso GJ
    Chem Commun (Camb); 2014 Mar; 50(23):3058-60. PubMed ID: 24515091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breathing pores on command: redox-responsive spongy membranes from poly(ferrocenylsilane)s.
    Zhang K; Feng X; Sui X; Hempenius MA; Vancso GJ
    Angew Chem Int Ed Engl; 2014 Dec; 53(50):13789-93. PubMed ID: 25345763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-responsive Hercosett/Poly(N-isopropylacrylamide) films: a new, fast, optically responsive coating.
    Wang J; Sutti A; Wang X; Lin T
    J Colloid Interface Sci; 2012 Mar; 369(1):231-7. PubMed ID: 22236607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular assembly of water-soluble poly(ferrocenylsilanes): multilayer structures on flat interfaces and permeability of microcapsules.
    Ma Y; Dong WF; Kooij ES; Hempenius MA; Möhwald H; Vancso GJ
    Soft Matter; 2007 Jun; 3(7):889-895. PubMed ID: 32900083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grafting of single, stimuli-responsive poly(ferrocenylsilane) polymer chains to gold surfaces.
    Zou S; Ma Y; Hempenius MA; Schönherr H; Vancso GJ
    Langmuir; 2004 Jul; 20(15):6278-87. PubMed ID: 15248713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks.
    Xia LW; Ju XJ; Liu JJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Sep; 349(1):106-13. PubMed ID: 20609844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogels with a Memory: Dual-Responsive, Organometallic Poly(ionic liquid)s with Hysteretic Volume-Phase Transition.
    Zhang K; Feng X; Ye C; Hempenius MA; Vancso GJ
    J Am Chem Soc; 2017 Jul; 139(29):10029-10035. PubMed ID: 28654756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-responsive organometallic hydrogels for in situ metal nanoparticle synthesis.
    Zoetebier B; Hempenius MA; Vancso GJ
    Chem Commun (Camb); 2015 Jan; 51(4):636-9. PubMed ID: 25371054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ferrocenylsilane) electrolytes as a gold nanoparticle foundry: "two-in-one" redox synthesis and electrosteric stabilization, and sensing applications.
    Song J; Tan YN; Jańczewski D; Hempenius MA; Xu JW; Tan HR; Vancso GJ
    Nanoscale; 2017 Dec; 9(48):19255-19262. PubMed ID: 29188844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrografting of stimuli-responsive, redox active organometallic polymers to gold from ionic liquids.
    Feng X; Sui X; Hempenius MA; Vancso GJ
    J Am Chem Soc; 2014 Jun; 136(22):7865-8. PubMed ID: 24834958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels.
    Meid J; Friedrich T; Tieke B; Lindner P; Richtering W
    Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine.
    Chang Y; Yandi W; Chen WY; Shih YJ; Yang CC; Chang Y; Ling QD; Higuchi A
    Biomacromolecules; 2010 Apr; 11(4):1101-10. PubMed ID: 20201492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switchable friction of stimulus-responsive hydrogels.
    Chang DP; Dolbow JE; Zauscher S
    Langmuir; 2007 Jan; 23(1):250-7. PubMed ID: 17190511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels.
    Buyanov AL; Gofman IV; Revel'skaya LG; Khripunov AK; Tkachenko AA
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):102-11. PubMed ID: 19878907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.