BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21590992)

  • 1. Synthesis and characterization of cytocompatible sulfonated polyanilines.
    Yang Y; Min Y; Wu JC; Hansford DJ; Feinberg SE; Epstein AJ
    Macromol Rapid Commun; 2011 Jun; 32(12):887-92. PubMed ID: 21590992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing polyaniline-poly(2-acrylamido-2-methylpropane sulfonic acid) biocompatibility with 3T3 fibroblasts.
    Bayer CL; Trenchard IJ; Peppas NA
    J Biomater Sci Polym Ed; 2010; 21(5):623-34. PubMed ID: 20338096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.
    Min Y; Yang Y; Poojari Y; Liu Y; Wu JC; Hansford DJ; Epstein AJ
    Biomacromolecules; 2013 Jun; 14(6):1727-31. PubMed ID: 23600698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review.
    Qazi TH; Rai R; Boccaccini AR
    Biomaterials; 2014 Nov; 35(33):9068-86. PubMed ID: 25112936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of nanostructure and cell compatibility of polyaniline films with different dopant acids.
    Wang HJ; Ji LW; Li DF; Wang JY
    J Phys Chem B; 2008 Mar; 112(9):2671-7. PubMed ID: 18260659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research progresses on electroactive and electrically conductive polymers for tissue engineering scaffolds].
    Li MY; Bidez P; Guterman-Tretter E; Guo Y; MacDiarmid AG; Lelkes PI; Yuan XB; Yuan XY; Sheng J; Li H; Song CX; Yen W
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2006 Dec; 28(6):845-8. PubMed ID: 17260480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.
    Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI
    Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyoctanediol citrate/sebacate bioelastomer films: surface morphology, chemistry and functionality.
    Djordjevic I; Choudhury NR; Dutta NK; Kumar S; Szili EJ; Steele DA
    J Biomater Sci Polym Ed; 2010; 21(2):237-51. PubMed ID: 20092687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Synthesis of electroconductive polyaniline using immobilized laccase].
    Vasil'eva IS; Morozova OV; Shumakovich GP; Iaropolov AI
    Prikl Biokhim Mikrobiol; 2009; 45(1):33-7. PubMed ID: 19235506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS
    J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spectroelectrochemical study on single-oscillator model and optical constants of sulfonated polyaniline film.
    Caglar M; Ilican S; Caglar Y; Sahin Y; Yakuphanoglu F; Hür D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):621-7. PubMed ID: 18337162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithic polymers for cell cultivation, differentiation, and tissue engineering.
    Löber A; Verch A; Schlemmer B; Höfer S; Frerich B; Buchmeiser MR
    Angew Chem Int Ed Engl; 2008; 47(47):9138-41. PubMed ID: 18925602
    [No Abstract]   [Full Text] [Related]  

  • 14. Review paper: progress in the field of conducting polymers for tissue engineering applications.
    Bendrea AD; Cianga L; Cianga I
    J Biomater Appl; 2011 Jul; 26(1):3-84. PubMed ID: 21680608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application.
    Baheiraei N; Yeganeh H; Ai J; Gharibi R; Azami M; Faghihi F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():24-37. PubMed ID: 25280676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoresponsive macroporous scaffolds prepared by emulsion templating.
    Zhou S; Bismarck A; Steinke JH
    Macromol Rapid Commun; 2012 Nov; 33(21):1833-9. PubMed ID: 22927192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of poly(n-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability.
    Tiwari A; Sharma Y; Hattori S; Terada D; Sharma AK; Turner AP; Kobayashi H
    Biopolymers; 2013 May; 99(5):334-41. PubMed ID: 23426576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendronized polyaniline nanotubes for cardiac tissue engineering.
    Moura RM; de Queiroz AA
    Artif Organs; 2011 May; 35(5):471-7. PubMed ID: 21595714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells.
    Thein-Han WW; Saikhun J; Pholpramoo C; Misra RD; Kitiyanant Y
    Acta Biomater; 2009 Nov; 5(9):3453-66. PubMed ID: 19460465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites.
    Liu X; Gilmore KJ; Moulton SE; Wallace GG
    J Neural Eng; 2009 Dec; 6(6):065002. PubMed ID: 19850977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.