BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21591874)

  • 1. Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa.
    Roblegg E; Fröhlich E; Meindl C; Teubl B; Zaversky M; Zimmer A
    Nanotoxicology; 2012 Jun; 6(4):399-413. PubMed ID: 21591874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vitro permeability of neutral polystyrene particles via buccal mucosa.
    Teubl BJ; Meindl C; Eitzlmayr A; Zimmer A; Fröhlich E; Roblegg E
    Small; 2013 Feb; 9(3):457-66. PubMed ID: 23112142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The buccal mucosa as a route for TiO2 nanoparticle uptake.
    Teubl BJ; Leitinger G; Schneider M; Lehr CM; Fröhlich E; Zimmer A; Roblegg E
    Nanotoxicology; 2015 Mar; 9(2):253-61. PubMed ID: 24873758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histological evaluation of buccal penetration enhancement properties of chitosan and trimethyl chitosan.
    Sandri G; Poggi P; Bonferoni MC; Rossi S; Ferrari F; Caramella C
    J Pharm Pharmacol; 2006 Oct; 58(10):1327-36. PubMed ID: 17034655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles.
    Schimpel C; Teubl B; Absenger M; Meindl C; Fröhlich E; Leitinger G; Zimmer A; Roblegg E
    Mol Pharm; 2014 Mar; 11(3):808-18. PubMed ID: 24502507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of galantamine transbuccal absorption by reconstituted human oral epithelium and porcine tissue as buccal mucosa models: part I.
    De Caro V; Giandalia G; Siragusa MG; Paderni C; Campisi G; Giannola LI
    Eur J Pharm Biopharm; 2008 Nov; 70(3):869-73. PubMed ID: 18647652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between nano-TiO2 and the oral cavity: impact of nanomaterial surface hydrophilicity/hydrophobicity.
    Teubl BJ; Schimpel C; Leitinger G; Bauer B; Fröhlich E; Zimmer A; Roblegg E
    J Hazard Mater; 2015 Apr; 286():298-305. PubMed ID: 25590824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oral cavity as a biological barrier system: design of an advanced buccal in vitro permeability model.
    Teubl BJ; Absenger M; Fröhlich E; Leitinger G; Zimmer A; Roblegg E
    Eur J Pharm Biopharm; 2013 Jun; 84(2):386-93. PubMed ID: 23291061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A murine scavenger receptor MARCO recognizes polystyrene nanoparticles.
    Kanno S; Furuyama A; Hirano S
    Toxicol Sci; 2007 Jun; 97(2):398-406. PubMed ID: 17361018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro permeation of tetramethylpyrazine across porcine buccal mucosa.
    Liu C; Xu HN; Li XL
    Acta Pharmacol Sin; 2002 Sep; 23(9):792-6. PubMed ID: 12230946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine buccal mucosa as an in vitro model: relative contribution of epithelium and connective tissue as permeability barriers.
    Kulkarni U; Mahalingam R; Pather SI; Li X; Jasti B
    J Pharm Sci; 2009 Feb; 98(2):471-83. PubMed ID: 18506782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium.
    Mistry A; Stolnik S; Illum L
    Mol Pharm; 2015 Aug; 12(8):2755-66. PubMed ID: 25997083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium.
    Mistry A; Glud SZ; Kjems J; Randel J; Howard KA; Stolnik S; Illum L
    J Drug Target; 2009 Aug; 17(7):543-52. PubMed ID: 19530905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymeric nanoparticles of different sizes overcome the cell membrane barrier.
    Lerch S; Dass M; Musyanovych A; Landfester K; Mailänder V
    Eur J Pharm Biopharm; 2013 Jun; 84(2):265-74. PubMed ID: 23422734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification and size dependence in particle translocation during early embryonic development.
    Tian F; Razansky D; Estrada GG; Semmler-Behnke M; Beyerle A; Kreyling W; Ntziachristos V; Stoeger T
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():92-6. PubMed ID: 19558239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa.
    Dünnhaupt S; Barthelmes J; Hombach J; Sakloetsakun D; Arkhipova V; Bernkop-Schnürch A
    Int J Pharm; 2011 Apr; 408(1-2):191-9. PubMed ID: 21295123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro placental model optimization for nanoparticle transport studies.
    Cartwright L; Poulsen MS; Nielsen HM; Pojana G; Knudsen LE; Saunders M; Rytting E
    Int J Nanomedicine; 2012; 7():497-510. PubMed ID: 22334780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of fluorescent polyisoprene nanoparticles and their uptake into various cells.
    Lorenz MR; Kohnle MV; Dass M; Walther P; Höcherl A; Ziener U; Landfester K; Mailänder V
    Macromol Biosci; 2008 Aug; 8(8):711-27. PubMed ID: 18504805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the theoretical pore sizes of the porcine oral mucosa for permeation of hydrophilic permeants.
    Goswami T; Jasti BR; Li X
    Arch Oral Biol; 2009 Jun; 54(6):577-82. PubMed ID: 19344889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line.
    Lunov O; Syrovets T; Loos C; Beil J; Delacher M; Tron K; Nienhaus GU; Musyanovych A; Mailänder V; Landfester K; Simmet T
    ACS Nano; 2011 Mar; 5(3):1657-69. PubMed ID: 21344890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.