These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 21591888)

  • 1. Multimodal optimization using a bi-objective evolutionary algorithm.
    Deb K; Saha A
    Evol Comput; 2012; 20(1):27-62. PubMed ID: 21591888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.
    Deb K; Sinha A
    Evol Comput; 2010; 18(3):403-49. PubMed ID: 20560758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new evolutionary algorithm for solving many-objective optimization problems.
    Zou X; Chen Y; Liu M; Kang L
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing robustness in multi-objective optimization.
    Deb K; Gupta H
    Evol Comput; 2006; 14(4):463-94. PubMed ID: 17109607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions.
    Deb K; Mohan M; Mishra S
    Evol Comput; 2005; 13(4):501-25. PubMed ID: 16297281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining convergence and diversity in evolutionary multiobjective optimization.
    Laumanns M; Thiele L; Deb K; Zitzler E
    Evol Comput; 2002; 10(3):263-82. PubMed ID: 12227996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.
    Elhossini A; Areibi S; Dony R
    Evol Comput; 2010; 18(1):127-56. PubMed ID: 20064026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems.
    Wang Y; Li HX; Yen GG; Song W
    IEEE Trans Cybern; 2015 Apr; 45(4):830-43. PubMed ID: 25099966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the multiple competitive facilities location and design problem on the plane.
    Redondo JL; Fernández J; García I; Ortigosa PM
    Evol Comput; 2009; 17(1):21-53. PubMed ID: 19207087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints.
    Zeng SY; Kang LS; Ding LX
    Evol Comput; 2004; 12(1):77-98. PubMed ID: 15096306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding.
    Guturu P; Dantu R
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):645-66. PubMed ID: 18558530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-objective optimization with controlled model assisted evolution strategies.
    Braun J; Krettek J; Hoffmann F; Bertram T
    Evol Comput; 2009; 17(4):577-93. PubMed ID: 19916780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms.
    Hu J; Goodman E; Seo K; Fan Z; Rosenberg R
    Evol Comput; 2005; 13(2):241-77. PubMed ID: 15969902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and scalable Pareto optimization by evolutionary local selection algorithms.
    Menczer F; Degeratu M; Street WN
    Evol Comput; 2000; 8(2):223-47. PubMed ID: 10843522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria.
    Wanner EF; Guimarães FG; Takahashi RH; Fleming PJ
    Evol Comput; 2008; 16(2):185-224. PubMed ID: 18554100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of (1+1) evolutionary algorithm and randomized local search with memory.
    Sung CW; Yuen SY
    Evol Comput; 2011; 19(2):287-323. PubMed ID: 20868262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic hybrid framework for constrained evolutionary optimization.
    Wang Y; Cai Z
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):203-17. PubMed ID: 21824851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiobjective optimization of temporal processes.
    Song Z; Kusiak A
    IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):845-56. PubMed ID: 19900853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary and principled search strategies for sensornet protocol optimization.
    Tate J; Woolford-Lim B; Bate I; Yao X
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):163-80. PubMed ID: 21859628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Test problem construction for single-objective bilevel optimization.
    Sinha A; Malo P; Deb K
    Evol Comput; 2014; 22(3):439-77. PubMed ID: 24364674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.