These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 21591975)
1. Challenges in Monte Carlo track structure modelling. Toburen LH Int J Radiat Biol; 2012 Jan; 88(1-2):2-9. PubMed ID: 21591975 [TBL] [Abstract][Full Text] [Related]
2. Charge transfer and ionisation by intermediate-energy heavy ions. Toburen LH; McLawhorn SL; McLawhorn RA; Evans NL; Justiniano EL; Shinpaugh JL; Schultz DR; Reinhold CO Radiat Prot Dosimetry; 2006; 122(1-4):22-5. PubMed ID: 17132666 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo track structure for radiation biology and space applications. Nikjoo H; Uehara S; Khvostunov IG; Cucinotta FA; Wilson WE; Goodhead DT Phys Med; 2001; 17 Suppl 1():38-44. PubMed ID: 11770535 [TBL] [Abstract][Full Text] [Related]
4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
5. EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water. Champion C; Le Loirec C; Stosic B Int J Radiat Biol; 2012 Jan; 88(1-2):54-61. PubMed ID: 22098415 [TBL] [Abstract][Full Text] [Related]
6. The Auger effect in physical and biological research. Nikjoo H; Emfietzoglou D; Charlton DE Int J Radiat Biol; 2008 Dec; 84(12):1011-26. PubMed ID: 19061125 [TBL] [Abstract][Full Text] [Related]
7. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code. Champion C; Le Loirec C Phys Med Biol; 2006 Apr; 51(7):1707-23. PubMed ID: 16552099 [TBL] [Abstract][Full Text] [Related]
8. High-speed evaluation of track-structure Monte Carlo electron transport simulations. Pasciak AS; Ford JR Phys Med Biol; 2008 Oct; 53(19):5539-53. PubMed ID: 18780958 [TBL] [Abstract][Full Text] [Related]
9. A Monte Carlo program for the analysis of low-energy electron tracks in liquid water. Wiklund K; Fernández-Varea JM; Lind BK Phys Med Biol; 2011 Apr; 56(7):1985-2003. PubMed ID: 21364263 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak. González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751 [TBL] [Abstract][Full Text] [Related]
11. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description. Madsen JR; Akabani G Phys Med Biol; 2014 May; 59(9):2285-305. PubMed ID: 24731979 [TBL] [Abstract][Full Text] [Related]
12. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes. Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312 [TBL] [Abstract][Full Text] [Related]
13. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra. Lazarakis P; Bug MU; Gargioni E; Guatelli S; Rabus H; Rosenfeld AB Phys Med Biol; 2012 Mar; 57(5):1231-50. PubMed ID: 22330641 [TBL] [Abstract][Full Text] [Related]
14. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations. Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo calculations of positron emitter yields in proton radiotherapy. Seravalli E; Robert C; Bauer J; Stichelbaut F; Kurz C; Smeets J; Van Ngoc Ty C; Schaart DR; Buvat I; Parodi K; Verhaegen F Phys Med Biol; 2012 Mar; 57(6):1659-73. PubMed ID: 22398196 [TBL] [Abstract][Full Text] [Related]
16. An energy-loss model for low- and intermediate-energy carbon projectiles in water. Liamsuwan T; Nikjoo H Int J Radiat Biol; 2012 Jan; 88(1-2):45-9. PubMed ID: 21913814 [TBL] [Abstract][Full Text] [Related]
17. Track structure: time evolution from physics to chemistry. Dingfelder M Radiat Prot Dosimetry; 2006; 122(1-4):16-21. PubMed ID: 17277326 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo simulation of charged particle transport in biomatter. Emfietzoglou D; Papamichael G; Moscovitch M Phys Med; 2001; 17 Suppl 1():113-4. PubMed ID: 11770524 [TBL] [Abstract][Full Text] [Related]
19. A Monte Carlo evaluation of carbon and lithium ions dose distributions in water. Taleei R; Hultqvist M; Gudowska I; Nikjoo H Int J Radiat Biol; 2012 Jan; 88(1-2):189-94. PubMed ID: 21929295 [TBL] [Abstract][Full Text] [Related]
20. Quantum versus classical Monte Carlo simulation of low-energy electron transport in condensed amorphous media. Thomson RM; Kawrakow I Phys Med; 2018 Oct; 54():179-188. PubMed ID: 30007841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]