BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2159304)

  • 1. Enzymatic studies of the effect of Cu (II) on oxygen radical production stimulated by daunorubicin and ametantrone.
    Tarasiuk J; Kolodziejczyk P; Borowski E
    Biochem Pharmacol; 1990 May; 39(9):1405-10. PubMed ID: 2159304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The essential role of anthraquinones as substrates for NADH dehydrogenase in their redox cycling activity.
    Tarasiuk J; Garnier-Suillerot A; Stefańska B; Borowski E
    Anticancer Drug Des; 1992 Aug; 7(4):329-40. PubMed ID: 1324690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin.
    Davies KJ; Doroshow JH; Hochstein P
    FEBS Lett; 1983 Mar; 153(1):227-30. PubMed ID: 6298008
    [No Abstract]   [Full Text] [Related]  

  • 4. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
    Doroshow JH
    Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bis(alkylamino)anthracenedione antineoplastic agent metabolic activation by NADPH-cytochrome P-450 reductase and NADH dehydrogenase: diminished activity relative to anthracyclines.
    Kharasch ED; Novak RF
    Arch Biochem Biophys; 1983 Jul; 224(2):682-94. PubMed ID: 6408991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthracenedione activation by NADPH-cytochrome P-450 reductase; comparison with anthracyclines.
    Kharasch ED; Novak RF
    Biochem Pharmacol; 1981 Oct; 30(20):2881-4. PubMed ID: 6274352
    [No Abstract]   [Full Text] [Related]  

  • 8. NAD(P)H (quinone acceptor) oxidoreductase (DT-diaphorase)-mediated two-electron reduction of anthraquinone-based antitumour agents and generation of hydroxyl radicals.
    Fisher GR; Gutierrez PL; Oldcorne MA; Patterson LH
    Biochem Pharmacol; 1992 Feb; 43(3):575-85. PubMed ID: 1311584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ability of new sugar-modified derivatives of antitumor anthracycline, daunorubicin, to stimulate NAD(P)H oxidation in different cellular oxidoreductase systems: NADH dehydrogenase, NADPH cytochrome P450 reductase, and xanthine oxidase.
    Pawłowska J; Priebe W; Paine MJ; Wolf CR; Borowski E; Tarasiuk J
    Oncol Res; 2004; 14(10):469-74. PubMed ID: 15559760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of oxygen by NADH/NADH dehydrogenase in the presence of adriamycin.
    Thornalley PJ; Bannister WH; Bannister JV
    Free Radic Res Commun; 1986; 2(3):163-71. PubMed ID: 2850270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of the low activity of antitumor anthracenediones, mitoxantrone and ametantrone, in oxygen radical generation catalyzed by NADH dehydrogenase. Enzymatic and molecular modelling studies.
    Tarasiuk J; Mazerski J; Tkaczyk-Gobis K; Borowski E
    Eur J Med Chem; 2005 Apr; 40(4):321-8. PubMed ID: 15804531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical studies of the iron(III)-carminomycin complex and evidence of the lack of stimulated superoxide production by NADH dehydrogenase.
    Fiallo MM; Garnier-Suillerot A
    Biochim Biophys Acta; 1985 May; 840(1):91-8. PubMed ID: 2986712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of competition between cytochrome c and anthraquinone type drugs for the reductive sites of NADH dehydrogenase.
    Tarasiuk J; Garnier-Suillerot A; Borowski E
    Biochem Pharmacol; 1989 Jul; 38(14):2285-9. PubMed ID: 2546562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low stimulation of NADH oxidation and oxygen consumption by 5-iminodaunorubicin and its derivatives.
    Tarasiuk J; Stefańska B; Borowski E
    Acta Biochim Pol; 1990; 37(2):251-9. PubMed ID: 2072983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ability of new formamidine sugar-modified derivatives of daunorubicin to stimulate free radical formation in three enzymatic systems: NADH dehydrogenase, NADPH cytochrome P450 reductase and xanthine oxidase.
    Pawłowska J; Tarasiuk J; Borowski E; Wasowska M; Oszczapowicz I; Wolf CR
    Acta Biochim Pol; 2000; 47(1):141-7. PubMed ID: 10961687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylene blue competes with paraquat for reduction by flavo-enzymes resulting in decreased superoxide production in the presence of heme proteins.
    Kelner MJ; Bagnell R; Hale B; Alexander NM
    Arch Biochem Biophys; 1988 May; 262(2):422-6. PubMed ID: 2835006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide anion production by adriamycinol from cardiac sarcosomes and by mitochondrial NADH dehydrogenase.
    Gervasi PG; Agrillo MR; Citti L; Danesi R; Del Tacca M
    Anticancer Res; 1986; 6(5):1231-5. PubMed ID: 3026233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA base modifications induced in isolated human chromatin by NADH dehydrogenase-catalyzed reduction of doxorubicin.
    Akman SA; Doroshow JH; Burke TG; Dizdaroglu M
    Biochemistry; 1992 Apr; 31(13):3500-6. PubMed ID: 1313297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitroreductase activity of NADH dehydrogenase of the respiratory redox chain.
    Smyth GE; Orsi BA
    Biochem J; 1989 Feb; 257(3):859-63. PubMed ID: 2494990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.