BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 21593308)

  • 1. Olfactory trace conditioning in Drosophila.
    Galili DS; Lüdke A; Galizia CG; Szyszka P; Tanimoto H
    J Neurosci; 2011 May; 31(20):7240-8. PubMed ID: 21593308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mind the gap: olfactory trace conditioning in honeybees.
    Szyszka P; Demmler C; Oemisch M; Sommer L; Biergans S; Birnbach B; Silbering AF; Galizia CG
    J Neurosci; 2011 May; 31(20):7229-39. PubMed ID: 21593307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential associative training enhances olfactory acuity in Drosophila melanogaster.
    Barth J; Dipt S; Pech U; Hermann M; Riemensperger T; Fiala A
    J Neurosci; 2014 Jan; 34(5):1819-37. PubMed ID: 24478363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment.
    Yu D; Ponomarev A; Davis RL
    Neuron; 2004 May; 42(3):437-49. PubMed ID: 15134640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Punishment prediction by dopaminergic neurons in Drosophila.
    Riemensperger T; Völler T; Stock P; Buchner E; Fiala A
    Curr Biol; 2005 Nov; 15(21):1953-60. PubMed ID: 16271874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice.
    Ross JM; Fletcher ML
    J Neurosci; 2018 May; 38(20):4623-4640. PubMed ID: 29669746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aversive olfactory associative memory loses odor specificity over time.
    König C; Antwi-Adjei E; Ganesan M; Kilonzo K; Viswanathan V; Durairaja A; Voigt A; Yarali A
    J Exp Biol; 2017 May; 220(Pt 9):1548-1553. PubMed ID: 28468811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning.
    Yu D; Keene AC; Srivatsan A; Waddell S; Davis RL
    Cell; 2005 Dec; 123(5):945-57. PubMed ID: 16325586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A late-phase, long-term memory trace forms in the γ neurons of Drosophila mushroom bodies after olfactory classical conditioning.
    Akalal DB; Yu D; Davis RL
    J Neurosci; 2010 Dec; 30(49):16699-708. PubMed ID: 21148009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order unimodal olfactory sensory preconditioning in
    Martinez-Cervantes J; Shah P; Phan A; Cervantes-Sandoval I
    Elife; 2022 Sep; 11():. PubMed ID: 36129180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx.
    Haenicke J; Yamagata N; Zwaka H; Nawrot M; Menzel R
    eNeuro; 2018; 5(3):. PubMed ID: 29938214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olfactory coding from the periphery to higher brain centers in the Drosophila brain.
    Seki Y; Dweck HKM; Rybak J; Wicher D; Sachse S; Hansson BS
    BMC Biol; 2017 Jun; 15(1):56. PubMed ID: 28666437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fear learning enhances neural responses to threat-predictive sensory stimuli.
    Kass MD; Rosenthal MC; Pottackal J; McGann JP
    Science; 2013 Dec; 342(6164):1389-1392. PubMed ID: 24337299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic exposure to odors at naturally occurring concentrations triggers limited plasticity in early stages of
    Gugel ZV; Maurais EG; Hong EJ
    Elife; 2023 May; 12():. PubMed ID: 37195027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage.
    Arenas A; Giurfa M; Farina WM; Sandoz JC
    Eur J Neurosci; 2009 Oct; 30(8):1498-508. PubMed ID: 19821839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second-order conditioning in Drosophila.
    Tabone CJ; de Belle JS
    Learn Mem; 2011; 18(4):250-3. PubMed ID: 21441302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct molecular underpinnings of Drosophila olfactory trace conditioning.
    Shuai Y; Hu Y; Qin H; Campbell RA; Zhong Y
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):20201-6. PubMed ID: 22123966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Associative conditioning tunes transient dynamics of early olfactory processing.
    Fernandez PC; Locatelli FF; Person-Rennell N; Deleo G; Smith BH
    J Neurosci; 2009 Aug; 29(33):10191-202. PubMed ID: 19692594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapidly acquired multisensory association in the olfactory cortex.
    Karunanayaka PR; Wilson DA; Vasavada M; Wang J; Martinez B; Tobia MJ; Kong L; Eslinger P; Yang QX
    Brain Behav; 2015 Nov; 5(11):e00390. PubMed ID: 26664785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning.
    Louis T; Stahl A; Boto T; Tomchik SM
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E448-E457. PubMed ID: 29284750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.