BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 21593462)

  • 1. Physiological assessment of active middle ear implant coupling to the round window in Chinchilla lanigera.
    Lupo JE; Koka K; Hyde BJ; Jenkins HA; Tollin DJ
    Otolaryngol Head Neck Surg; 2011 Oct; 145(4):641-7. PubMed ID: 21593462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis.
    Koka K; Holland NJ; Lupo JE; Jenkins HA; Tollin DJ
    Hear Res; 2010 May; 263(1-2):128-37. PubMed ID: 19720125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective electrophysiologic findings of round window stimulation in a model of experimentally induced stapes fixation.
    Lupo JE; Koka K; Holland NJ; Jenkins HA; Tollin DJ
    Otol Neurotol; 2009 Dec; 30(8):1215-24. PubMed ID: 19779388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of auditory responses determined by acoustic stimulation and by mechanical round window stimulation at equivalent stapes velocities.
    Lee J; Seong K; Lee SH; Lee KY; Cho JH
    Hear Res; 2014 Aug; 314():65-71. PubMed ID: 24768763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors improving the vibration transfer of the floating mass transducer at the round window.
    Arnold A; Stieger C; Candreia C; Pfiffner F; Kompis M
    Otol Neurotol; 2010 Jan; 31(1):122-8. PubMed ID: 19887971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].
    Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1109-13. PubMed ID: 23469540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Stapes Velocity to Estimate the Efficacy of Mechanical Stimulation of the Round Window With an Active Middle Ear Implant.
    Tollin DJ; Koka K; Peacock J
    Otol Neurotol; 2023 Jun; 44(5):e311-e318. PubMed ID: 36962010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of coupling techniques of an active middle ear device to the round window membrane for the backward stimulation of the cochlea.
    Gostian AO; Pazen D; Ortmann M; Luers JC; Anagiotos A; Hüttenbrink KB; Beutner D
    Otol Neurotol; 2015 Jan; 36(1):111-7. PubMed ID: 25406868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The round window membrane under normal and pathological conditions.
    Goycoolea MV
    Acta Otolaryngol Suppl; 1992; 493():43-55. PubMed ID: 1636422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Silastic sheeting over the round window niche on sound transmission in the intact human middle ear.
    Alian WA; Majdalawieh OF; Van Wijhe RG; Ejnell H; Bance M
    J Otolaryngol Head Neck Surg; 2012 Feb; 41(1):1-7. PubMed ID: 22498261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone conduction in Thiel-embalmed cadaver heads.
    Guignard J; Stieger C; Kompis M; Caversaccio M; Arnold A
    Hear Res; 2013 Dec; 306():115-22. PubMed ID: 24161399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Round window stimulation with the floating mass transducer at constant pretension.
    Salcher R; Schwab B; Lenarz T; Maier H
    Hear Res; 2014 Aug; 314():1-9. PubMed ID: 24727490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The floating mass transducer at the round window: direct transmission or bone conduction?
    Arnold A; Kompis M; Candreia C; Pfiffner F; Häusler R; Stieger C
    Hear Res; 2010 May; 263(1-2):120-7. PubMed ID: 20005939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cochlear window fixation on air- and bone-conduction thresholds.
    Nageris BI; Attias J; Shemesh R; Hod R; Preis M
    Otol Neurotol; 2012 Dec; 33(9):1679-84. PubMed ID: 23150097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of a direct acoustic cochlear stimulator.
    Chatzimichalis M; Sim JH; Huber AM
    Audiol Neurootol; 2012; 17(5):299-308. PubMed ID: 22739432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Doppler vibrometric assessment of middle ear motion in Thiel-embalmed heads.
    Stieger C; Candreia C; Kompis M; Herrmann G; Pfiffner F; Widmer D; Arnold A
    Otol Neurotol; 2012 Apr; 33(3):311-8. PubMed ID: 22377645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms.
    Charaziak KK; Siegel JH; Shera CA
    J Assoc Res Otolaryngol; 2018 Aug; 19(4):401-419. PubMed ID: 30014309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.