These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 21593552)
1. Origin of activation energy in a superionic conductor. Kamishima O; Kawamura K; Hattori T; Kawamura J J Phys Condens Matter; 2011 Jun; 23(22):225404. PubMed ID: 21593552 [TBL] [Abstract][Full Text] [Related]
2. Silver ion dynamics in the Ag5Te2Cl-polymorphs revealed by solid state NMR lineshape and two- and three-time correlation spectroscopies. Brinkmann C; Faske S; Vogel M; Nilges T; Heuer A; Eckert H Phys Chem Chem Phys; 2006 Jan; 8(3):369-78. PubMed ID: 16482280 [TBL] [Abstract][Full Text] [Related]
3. Ionic diffusion within the α(*) and β phases of Ag(3)SI. Hull S; Keen DA; Madden PA; Wilson M J Phys Condens Matter; 2007 Oct; 19(40):406214. PubMed ID: 22049113 [TBL] [Abstract][Full Text] [Related]
4. Disorder in Ag7GeSe5I, a superionic conductor: temperature-dependent anharmonic structural study. Albert S; Pillet S; Lecomte C; Pradel A; Ribes M Acta Crystallogr B; 2008 Feb; 64(Pt 1):1-11. PubMed ID: 18204206 [TBL] [Abstract][Full Text] [Related]
5. Anharmonic lattice dynamics and superionic transition in AgCrSe Ding J; Niedziela JL; Bansal D; Wang J; He X; May AF; Ehlers G; Abernathy DL; Said A; Alatas A; Ren Y; Arya G; Delaire O Proc Natl Acad Sci U S A; 2020 Feb; 117(8):3930-3937. PubMed ID: 32029595 [TBL] [Abstract][Full Text] [Related]
6. Medium-range correlation of Ag ions in superionic melts of Ag2Se and AgI by reverse Monte Carlo structural modelling-connectivity and void distribution. Tahara S; Ueno H; Ohara K; Kawakita Y; Kohara S; Ohno S; Takeda S J Phys Condens Matter; 2011 Jun; 23(23):235102. PubMed ID: 21613697 [TBL] [Abstract][Full Text] [Related]
7. Pressure induced ionic-superionic transition in silver iodide at ambient temperature. Han YH; Wang HB; Troyan IA; Gao CX; Eremets MI J Chem Phys; 2014 Jan; 140(4):044708. PubMed ID: 25669568 [TBL] [Abstract][Full Text] [Related]
8. Superionic Ag Watanabe Y; Suzuki R; Kato K; Yamane H; Kitaura M; Ina T; Uchida K; Matsushima Y Inorg Chem; 2021 Mar; 60(5):2931-2938. PubMed ID: 33562963 [TBL] [Abstract][Full Text] [Related]
9. Li+ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide. Li W; Wu G; Xiong Z; Feng YP; Chen P Phys Chem Chem Phys; 2012 Feb; 14(5):1596-606. PubMed ID: 22173712 [TBL] [Abstract][Full Text] [Related]
10. Correlation between dynamic heterogeneity and local structure in a room-temperature ionic liquid: a molecular dynamics study of [bmim][PF(6)]. Sarangi SS; Zhao W; Müller-Plathe F; Balasubramanian S Chemphyschem; 2010 Jun; 11(9):2001-10. PubMed ID: 20480488 [TBL] [Abstract][Full Text] [Related]
11. Comparison of partial structures of melts of superionic AgI and CuI and non-superionic AgCl. Kawakita Y; Tahara S; Fujii H; Kohara S; Takeda S J Phys Condens Matter; 2007 Aug; 19(33):335201. PubMed ID: 21694124 [TBL] [Abstract][Full Text] [Related]
19. Hybrid Ag(2)S-Ag(3)SBr superionic conductor nanoparticles and their large-scale ordered arrays. Sun Y; Zhou B; Liao F; Li G J Colloid Interface Sci; 2011 Feb; 354(1):410-2. PubMed ID: 21047642 [TBL] [Abstract][Full Text] [Related]
20. On the dynamics of ionic liquids: comparisons between electronically polarizable and nonpolarizable models II. Yan T; Wang Y; Knox C J Phys Chem B; 2010 May; 114(20):6886-904. PubMed ID: 20443608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]