These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21593557)

  • 1. Quantum criticality in the iron pnictides and chalcogenides.
    Abrahams E; Si Q
    J Phys Condens Matter; 2011 Jun; 23(22):223201. PubMed ID: 21593557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron pnictides as a new setting for quantum criticality.
    Dai J; Si Q; Zhu JX; Abrahams E
    Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4118-21. PubMed ID: 19273850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconductivity at the border of electron localization and itinerancy.
    Yu R; Goswami P; Si Q; Nikolic P; Zhu JX
    Nat Commun; 2013; 4():2783. PubMed ID: 24231858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.
    Park T; Ronning F; Yuan HQ; Salamon MB; Movshovich R; Sarrao JL; Thompson JD
    Nature; 2006 Mar; 440(7080):65-8. PubMed ID: 16511490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron pnictides and chalcogenides: a new paradigm for superconductivity.
    Fernandes RM; Coldea AI; Ding H; Fisher IR; Hirschfeld PJ; Kotliar G
    Nature; 2022 Jan; 601(7891):35-44. PubMed ID: 34987212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum criticality in electron-doped BaFe2-xNixAs2.
    Zhou R; Li Z; Yang J; Sun DL; Lin CT; Zheng GQ
    Nat Commun; 2013; 4():2265. PubMed ID: 23945701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superconductivity and magnetism in 11-structure iron chalcogenides in relation to the iron pnictides.
    Singh DJ
    Sci Technol Adv Mater; 2012 Oct; 13(5):054304. PubMed ID: 27877517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nontrivial Role of Interlayer Cation States in Iron-Based Superconductors.
    Guterding D; Jeschke HO; Mazin II; Glasbrenner JK; Bascones E; Valentí R
    Phys Rev Lett; 2017 Jan; 118(1):017204. PubMed ID: 28106450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7.
    Grigera SA; Perry RS; Schofield AJ; Chiao M; Julian SR; Lonzarich GG; Ikeda SI; Maeno Y; Millis AJ; Mackenzie AP
    Science; 2001 Oct; 294(5541):329-32. PubMed ID: 11598292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergent Magnetic Degeneracy in Iron Pnictides due to the Interplay between Spin-Orbit Coupling and Quantum Fluctuations.
    Christensen MH; Orth PP; Andersen BM; Fernandes RM
    Phys Rev Lett; 2018 Aug; 121(5):057001. PubMed ID: 30118255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of two-magnon Raman scattering in iron pnictides and chalcogenides.
    Chen CC; Jia CJ; Kemper AF; Singh RR; Devereaux TP
    Phys Rev Lett; 2011 Feb; 106(6):067002. PubMed ID: 21405486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disorder-sensitive phase formation linked to metamagnetic quantum criticality.
    Grigera SA; Gegenwart P; Borzi RA; Weickert F; Schofield AJ; Perry RS; Tayama T; Sakakibara T; Maeno Y; Green AG; Mackenzie AP
    Science; 2004 Nov; 306(5699):1154-7. PubMed ID: 15539596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orbital-independent superconducting gaps in iron pnictides.
    Shimojima T; Sakaguchi F; Ishizaka K; Ishida Y; Kiss T; Okawa M; Togashi T; Chen CT; Watanabe S; Arita M; Shimada K; Namatame H; Taniguchi M; Ohgushi K; Kasahara S; Terashima T; Shibauchi T; Matsuda Y; Chainani A; Shin S
    Science; 2011 Apr; 332(6029):564-7. PubMed ID: 21474714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The magnetic moment enigma in Fe-based high temperature superconductors.
    Mannella N
    J Phys Condens Matter; 2014 Nov; 26(47):473202. PubMed ID: 25352180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unconventional quantum criticality emerging as a new common language of transition-metal compounds, heavy-fermion systems, and organic conductors.
    Imada M; Misawa T; Yamaji Y
    J Phys Condens Matter; 2010 Apr; 22(16):164206. PubMed ID: 21386412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale electronic order in iron pnictides.
    Lang G; Grafe HJ; Paar D; Hammerath F; Manthey K; Behr G; Werner J; Büchner B
    Phys Rev Lett; 2010 Mar; 104(9):097001. PubMed ID: 20367004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and magnetic phase diagram of CeFeAsO(1- x)F(x) and its relation to high-temperature superconductivity.
    Zhao J; Huang Q; de la Cruz C; Li S; Lynn JW; Chen Y; Green MA; Chen GF; Li G; Li Z; Luo JL; Wang NL; Dai P
    Nat Mater; 2008 Dec; 7(12):953-9. PubMed ID: 18953342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of superconductivity by Néel-type magnetic fluctuations in the iron pnictides.
    Fernandes RM; Millis AJ
    Phys Rev Lett; 2013 Mar; 110(11):117004. PubMed ID: 25166566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of multiband superconductivity in iron pnictides.
    Laad MS; Craco L
    Phys Rev Lett; 2009 Jul; 103(1):017002. PubMed ID: 19659171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-driven quantum criticality in iron-selenide superconductors.
    Guo J; Chen XJ; Dai J; Zhang C; Guo J; Chen X; Wu Q; Gu D; Gao P; Yang L; Yang K; Dai X; Mao HK; Sun L; Zhao Z
    Phys Rev Lett; 2012 May; 108(19):197001. PubMed ID: 23003077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.