BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 2159386)

  • 1. cAMP levels and in situ measurement of cAMP related enzymes during yeast-to-hyphae transition in Candida albicans.
    Egidy G; Paveto C; Passeron S; Galvagno MA
    Cell Biol Int Rep; 1990 Jan; 14(1):59-68. PubMed ID: 2159386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP levels and in situ measurement of adenylate cyclase and cAMP phosphodiesterase activities during yeast-to-hyphae transition in the dimorphic fungus Mucor rouxii.
    Cantore ML; Galvagno MA; Passeron S
    Cell Biol Int Rep; 1983 Nov; 7(11):947-54. PubMed ID: 6317206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on cyclic adenosine 3' ,5'-monophosphate levels, Adenylate cyclase and phosphodiesterase activities in the dimorphic fungus Mucor rouxii.
    Paveto C; Epstein A; Passeron S
    Arch Biochem Biophys; 1975 Aug; 169(2):449-57. PubMed ID: 170864
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of cyclic AMP levels in Arthrobacter crystallopoietes and a morphogenetic mutant.
    Hamilton RW; Kolenbrander PE
    J Bacteriol; 1978 Jun; 134(3):1064-73. PubMed ID: 207674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic adenosine 3',5'-monophosphate and germination of sporangiospores from the fungus Mucor.
    Orlowski M
    Arch Microbiol; 1980 Jun; 126(2):133-40. PubMed ID: 6254459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ measurement of cAMP related enzymes in the dimorphic fungus Mucor rouxii.
    Maggese MC; Galvagno MA; Cantore ML; Passeron S
    Cell Biol Int Rep; 1982 Dec; 6(12):1101-8. PubMed ID: 6295644
    [No Abstract]   [Full Text] [Related]  

  • 7. The relationship between the growth characteristics of somatic cell hybrids and their level of camp and activities of adenylate cyclase and camp phosphodiesterase.
    Tisdale MJ; Phillips BJ
    Exp Cell Res; 1976 Apr; 99(1):63-71. PubMed ID: 177303
    [No Abstract]   [Full Text] [Related]  

  • 8. Variations in the levels of cyclic adenosine 3':5'-monophosphate and in the activities of adenylate cyclase and cyclic adenosine 3':5'-monophosphate phosphodiesterase during aerobic morphogenesis of Mucor rouxii.
    Cantore ML; Galvagno MA; Passeron S
    Arch Biochem Biophys; 1980 Feb; 199(2):312-20. PubMed ID: 6244775
    [No Abstract]   [Full Text] [Related]  

  • 9. [Fluctuations in the level of cyclic AMP and activities of adenylate cyclase and cyclic-AMP phosphodiesterase in synchronous cultures of the prokaryote Nocardia restricta (author's transl)].
    Lefebvre G; Martin N; Schneider F; Raval G; Gay R
    Biochim Biophys Acta; 1978 May; 540(2):221-30. PubMed ID: 207351
    [No Abstract]   [Full Text] [Related]  

  • 10. Tailoring cAMP-signalling responses through isoform multiplicity.
    Houslay MD; Milligan G
    Trends Biochem Sci; 1997 Jun; 22(6):217-24. PubMed ID: 9204709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nucleosides and nucleotides and the relationship between cellular adenosine 3':5'-cyclic monophosphate (cyclic AMP) and germ tube formation in Candida albicans.
    Sabie FT; Gadd GM
    Mycopathologia; 1992 Sep; 119(3):147-56. PubMed ID: 1331793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dual mechanism for regulating cAMP levels in Escherichia coli.
    Amin N; Peterkofsky A
    J Biol Chem; 1995 May; 270(20):11803-5. PubMed ID: 7744829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The antilipolytic effect of insulin does not require adenylate cyclase or phosphodiesterase action.
    Gabbay RA; Lardy HA
    FEBS Lett; 1985 Jan; 179(1):7-11. PubMed ID: 2981181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Variations in cyclic AMP level and specific activities of adenylate cyclase and cyclic AMP phosphodiesterase during the cell cycle of an Actinomycete (author's transl)].
    Lefebvre G; Raval G; Gay R
    Biochim Biophys Acta; 1980 Sep; 632(1):26-34. PubMed ID: 6158343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-protein complex controls cAMP signalling and filamentation in the fungal pathogen Candida albicans.
    Hall RA; Mühlschlegel FA
    Mol Microbiol; 2010 Feb; 75(3):534-7. PubMed ID: 20015145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenylate cyclase and cyclic AMP phosphodiesterase in Bradyrhizobium japonicum bacteroids.
    Catanese CA; Emerich DW; Zahler WL
    J Bacteriol; 1989 Sep; 171(9):4531-6. PubMed ID: 2548992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans.
    Lindsay AK; Deveau A; Piispanen AE; Hogan DA
    Eukaryot Cell; 2012 Oct; 11(10):1219-25. PubMed ID: 22886999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of cAMP in the cells of Candida tropicalis at an early stage of ethanol-induced filamentous growth and its prevention by myo-inositol.
    Omi K; Kamihara T
    Biochem Biophys Res Commun; 1989 Jul; 162(2):646-50. PubMed ID: 2547368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular cyclic AMP concentrations in hepatocytes involves the integrated activation and desensitization of adenylyl cyclase coupled with the action and activation of specific isoforms of cyclic AMP phosphodiesterase.
    Houslay MD; Griffiths SL; Horton YM; Livingstone C; Lobban M; Macdonald F; Morris N; Pryde J; Scotland G; Shakur Y
    Biochem Soc Trans; 1992 Feb; 20(1):140-6. PubMed ID: 1321746
    [No Abstract]   [Full Text] [Related]  

  • 20. A study of cyclic nucleotide metabolism and the histology of rat liver during 3'-methyl-4-dimethylamino-azobenzene carcinogenesis. II. Cyclic AMP metabolism.
    Boyd H; McAfee DA; Rubin JJ
    Tissue Cell; 1978; 10(3):477-94. PubMed ID: 214895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.