These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 21594297)
1. Structure-property interplay of proton conducting membranes based on PBI5N, SiO2-Im and H3PO4 for high temperature fuel cells. Di Noto V; Piga M; Giffin GA; Quartarone E; Righetti P; Mustarelli P; Magistris A Phys Chem Chem Phys; 2011 Jul; 13(26):12146-54. PubMed ID: 21594297 [TBL] [Abstract][Full Text] [Related]
2. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells. Nawn G; Pace G; Lavina S; Vezzù K; Negro E; Bertasi F; Polizzi S; Di Noto V ChemSusChem; 2015 Apr; 8(8):1381-93. PubMed ID: 25801848 [TBL] [Abstract][Full Text] [Related]
3. Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized nafion 117 for high-temperature fuel cells. Di Noto V; Negro E; Sanchez JY; Iojoiu C J Am Chem Soc; 2010 Feb; 132(7):2183-95. PubMed ID: 20102239 [TBL] [Abstract][Full Text] [Related]
4. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes. Di Noto V; Gliubizzi R; Negro E; Pace G J Phys Chem B; 2006 Dec; 110(49):24972-86. PubMed ID: 17149919 [TBL] [Abstract][Full Text] [Related]
5. Anhydrous proton-conducting polymeric electrolytes for fuel cells. Narayanan SR; Yen SP; Liu L; Greenbaum SG J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680 [TBL] [Abstract][Full Text] [Related]
6. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity. Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129 [TBL] [Abstract][Full Text] [Related]
7. Bioinspired blend membranes based on adenine and guanine functional poly(glycidyl methacrylate). Aslan A; Bozkurt A Langmuir; 2010 Aug; 26(16):13655-61. PubMed ID: 20695617 [TBL] [Abstract][Full Text] [Related]
8. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Asensio JA; Sánchez EM; Gómez-Romero P Chem Soc Rev; 2010 Aug; 39(8):3210-39. PubMed ID: 20577662 [TBL] [Abstract][Full Text] [Related]
9. Structure and properties of polybenzimidazole/silica nanocomposite electrolyte membrane: influence of organic/inorganic interface. Singha S; Jana T ACS Appl Mater Interfaces; 2014 Dec; 6(23):21286-96. PubMed ID: 25365766 [TBL] [Abstract][Full Text] [Related]
10. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Steininger H; Schuster M; Kreuer KD; Kaltbeitzel A; Bingöl B; Meyer WH; Schauff S; Brunklaus G; Maier J; Spiess HW Phys Chem Chem Phys; 2007 Apr; 9(15):1764-73. PubMed ID: 17415487 [TBL] [Abstract][Full Text] [Related]
11. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Zeng J; Zhou Y; Li L; Jiang SP Phys Chem Chem Phys; 2011 Jun; 13(21):10249-57. PubMed ID: 21541370 [TBL] [Abstract][Full Text] [Related]
12. New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs. Fernicola A; Panero S; Scrosati B; Tamada M; Ohno H Chemphyschem; 2007 May; 8(7):1103-7. PubMed ID: 17393375 [TBL] [Abstract][Full Text] [Related]
13. Interplay between mechanical, electrical, and thermal relaxations in nanocomposite proton conducting membranes based on Nafion and a [(ZrO2)·(Ta2O5)(0.119)] core-shell nanofiller. Di Noto V; Piga M; Giffin GA; Vezzù K; Zawodzinski TA J Am Chem Soc; 2012 Nov; 134(46):19099-107. PubMed ID: 23102554 [TBL] [Abstract][Full Text] [Related]
14. Proton exchange membrane developed from novel blends of polybenzimidazole and poly(vinyl-1,2,4-triazole). Hazarika M; Jana T ACS Appl Mater Interfaces; 2012 Oct; 4(10):5256-65. PubMed ID: 22953698 [TBL] [Abstract][Full Text] [Related]
15. Development of new glass composite membranes and their properties for low temperature H2/O2 fuel cells. Uma T; Nogami M Chemphyschem; 2007 Oct; 8(15):2227-34. PubMed ID: 17876756 [TBL] [Abstract][Full Text] [Related]
17. Interplay between structure and relaxations in perfluorosulfonic acid proton conducting membranes. Giffin GA; Haugen GM; Hamrock SJ; Di Noto V J Am Chem Soc; 2013 Jan; 135(2):822-34. PubMed ID: 23249300 [TBL] [Abstract][Full Text] [Related]
18. Effect of SiO2 on the dynamics of proton conducting [Nafion/(SiO2)X] composite membranes: a solid-state 19F NMR study. Ghassemzadeh L; Pace G; Di Noto V; Müller K Phys Chem Chem Phys; 2011 May; 13(20):9327-34. PubMed ID: 21479290 [TBL] [Abstract][Full Text] [Related]
19. Anhydrous proton-conducting membrane based on poly-2-vinylpyridinium dihydrogenphosphate for electrochemical applications. Yang B; Manohar A; Prakash GK; Chen W; Narayanan SR J Phys Chem B; 2011 Dec; 115(49):14462-8. PubMed ID: 22029863 [TBL] [Abstract][Full Text] [Related]
20. Study of Proton Transport in Diethylmethylammonium Poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]-Based Composite Membranes with Triflic Acid and Diethylmethylamine-Rich Compositions. Shah AH; Rana UA; Zhu H; Li J; Vijayaraghavan R; Macfarlane DR; Forsyth M; Siddiqi HM J Phys Chem B; 2021 Oct; 125(39):11005-11016. PubMed ID: 34570507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]