These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 21594684)

  • 21. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins.
    Brahma B; Patra MC; Karri S; Chopra M; Mishra P; De BC; Kumar S; Mahanty S; Thakur K; Poluri KM; Datta TK; De S
    PLoS One; 2015; 10(12):e0144741. PubMed ID: 26675301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775.
    Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S
    Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1.
    Wang P; Bang JK; Kim HJ; Kim JK; Kim Y; Shin SY
    Peptides; 2009 Dec; 30(12):2144-9. PubMed ID: 19778562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides.
    Mattiuzzo M; Bandiera A; Gennaro R; Benincasa M; Pacor S; Antcheva N; Scocchi M
    Mol Microbiol; 2007 Oct; 66(1):151-63. PubMed ID: 17725560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.
    Taniguchi M; Ochiai A; Kondo H; Fukuda S; Ishiyama Y; Saitoh E; Kato T; Tanaka T
    J Biosci Bioeng; 2016 May; 121(5):591-8. PubMed ID: 26472128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insect antimicrobial peptides and their applications.
    Yi HY; Chowdhury M; Huang YD; Yu XQ
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5807-22. PubMed ID: 24811407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat.
    Tripathi AK; Kumari T; Tandon A; Sayeed M; Afshan T; Kathuria M; Shukla PK; Mitra K; Ghosh JK
    Acta Biomater; 2017 Jul; 57():170-186. PubMed ID: 28483698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of C-Terminal Residues of 12-Mer Peptides on Antibacterial Efficacy and Mechanism.
    Son K; Kim J; Jang M; Chauhan AK; Kim Y
    J Microbiol Biotechnol; 2019 Nov; 29(11):1707-1716. PubMed ID: 31546301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The short proline-rich antibacterial peptide family.
    Otvos L
    Cell Mol Life Sci; 2002 Jul; 59(7):1138-50. PubMed ID: 12222961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization.
    Wessolowski A; Bienert M; Dathe M
    J Pept Res; 2004 Oct; 64(4):159-69. PubMed ID: 15357671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leptoglycin: a new Glycine/Leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae).
    Sousa JC; Berto RF; Gois EA; Fontenele-Cardi NC; Honório JE; Konno K; Richardson M; Rocha MF; Camargo AA; Pimenta DC; Cardi BA; Carvalho KM
    Toxicon; 2009 Jul; 54(1):23-32. PubMed ID: 19298834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome.
    Krizsan A; Volke D; Weinert S; Sträter N; Knappe D; Hoffmann R
    Angew Chem Int Ed Engl; 2014 Nov; 53(45):12236-9. PubMed ID: 25220491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating the mode of action of proline-rich antimicrobial peptides using a genetic approach: a tool to identify new bacterial targets amenable to the design of novel antibiotics.
    Scocchi M; Mattiuzzo M; Benincasa M; Antcheva N; Tossi A; Gennaro R
    Methods Mol Biol; 2008; 494():161-76. PubMed ID: 18726573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Host-defense antimicrobial peptides: importance of structure for activity.
    Sitaram N; Nagaraj R
    Curr Pharm Des; 2002; 8(9):727-42. PubMed ID: 11945168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Describing the mechanism of antimicrobial peptide action with the interfacial activity model.
    Wimley WC
    ACS Chem Biol; 2010 Oct; 5(10):905-17. PubMed ID: 20698568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in antimicrobial peptide immunobiology.
    Yount NY; Bayer AS; Xiong YQ; Yeaman MR
    Biopolymers; 2006; 84(5):435-58. PubMed ID: 16736494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins.
    Nair DG; Fry BG; Alewood P; Kumar PP; Kini RM
    Biochem J; 2007 Feb; 402(1):93-104. PubMed ID: 17044815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.
    Malanovic N; Lohner K
    Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant antimicrobial peptides.
    Nawrot R; Barylski J; Nowicki G; Broniarczyk J; Buchwald W; Goździcka-Józefiak A
    Folia Microbiol (Praha); 2014 May; 59(3):181-96. PubMed ID: 24092498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold.
    Findlay B; Zhanel GG; Schweizer F
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4049-58. PubMed ID: 20696877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.