These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21594872)

  • 21. Mapping multiple visual areas in the human brain with a short fMRI sequence.
    Stiers P; Peeters R; Lagae L; Van Hecke P; Sunaert S
    Neuroimage; 2006 Jan; 29(1):74-89. PubMed ID: 16154766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perirhinal and hippocampal contributions to visual recognition memory can be distinguished from those of occipito-temporal structures based on conscious awareness of prior occurrence.
    Danckert SL; Gati JS; Menon RS; Köhler S
    Hippocampus; 2007; 17(11):1081-92. PubMed ID: 17696171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: a near-infrared optical topography study.
    Taga G; Asakawa K; Hirasawa K; Konishi Y
    Early Hum Dev; 2003 Dec; 75 Suppl():S203-10. PubMed ID: 14693406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alteration of blood oxygenation level-dependent signaling by local circulatory condition.
    Kamba M; Sung YW; Ogawa S
    J Magn Reson Imaging; 2007 Dec; 26(6):1506-13. PubMed ID: 17968895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hemodynamic correlate of lateralized visual short-term memories.
    Cutini S; Scarpa F; Scatturin P; Jolicœur P; Pluchino P; Zorzi M; Dell'Acqua R
    Neuropsychologia; 2011 May; 49(6):1611-21. PubMed ID: 21163274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemodynamic change in occipital lobe during visual search: visual attention allocation measured with NIRS.
    Kojima H; Suzuki T
    Neuropsychologia; 2010 Jan; 48(1):349-52. PubMed ID: 19800898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Object representations for multiple visual categories overlap in lateral occipital and medial fusiform cortex.
    Pourtois G; Schwartz S; Spiridon M; Martuzzi R; Vuilleumier P
    Cereb Cortex; 2009 Aug; 19(8):1806-19. PubMed ID: 19015371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. fMRI and EEG responses to periodic visual stimulation.
    Guy CN; ffytche DH; Brovelli A; Chumillas J
    Neuroimage; 1999 Aug; 10(2):125-48. PubMed ID: 10417246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: pathophysiological implications.
    Martín H; Sánchez del Río M; de Silanes CL; Álvarez-Linera J; Hernández JA; Pareja JA
    Headache; 2011; 51(10):1520-8. PubMed ID: 22082422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of auditory input on activations in infant diverse cortical regions during audiovisual processing.
    Watanabe H; Homae F; Nakano T; Tsuzuki D; Enkhtur L; Nemoto K; Dan I; Taga G
    Hum Brain Mapp; 2013 Mar; 34(3):543-65. PubMed ID: 22102331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy.
    Sato H; Kiguchi M; Kawaguchi F; Maki A
    Neuroimage; 2004 Apr; 21(4):1554-62. PubMed ID: 15050579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selectivity and localization of cortical response to auditory and visual stimulation in awake infants aged 2 to 4 months.
    Taga G; Asakawa K
    Neuroimage; 2007 Jul; 36(4):1246-52. PubMed ID: 17524672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of the right fronto-temporal cortex during maternal facial recognition in young infants.
    Carlsson J; Lagercrantz H; Olson L; Printz G; Bartocci M
    Acta Paediatr; 2008 Sep; 97(9):1221-5. PubMed ID: 18627358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Category-specific organization of prefrontal response-facilitation during priming.
    Bunzeck N; Schütze H; Düzel E
    Neuropsychologia; 2006; 44(10):1765-76. PubMed ID: 16701731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced temporal non-linearities in human object-related occipito-temporal cortex.
    Mukamel R; Harel M; Hendler T; Malach R
    Cereb Cortex; 2004 May; 14(5):575-85. PubMed ID: 15054073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual functional magnetic resonance imaging of preterm infants.
    Lee W; Donner EJ; Nossin-Manor R; Whyte HE; Sled JG; Taylor MJ
    Dev Med Child Neurol; 2012 Aug; 54(8):724-9. PubMed ID: 22715952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hazardous nature of high-temporal-frequency strobe light stimulation: neural mechanisms revealed by magnetoencephalography.
    Shigihara Y; Tanaka M; Tsuyuguchi N; Tanaka H; Watanabe Y
    Neuroscience; 2010 Mar; 166(2):482-90. PubMed ID: 20060038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repetition suppression in occipital-temporal visual areas is modulated by physical rather than semantic features of objects.
    Chouinard PA; Morrissey BF; Köhler S; Goodale MA
    Neuroimage; 2008 May; 41(1):130-44. PubMed ID: 18375148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.