These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21595303)

  • 41. Development and characterization of nanoparticles of glibenclamide by solvent displacement method.
    Dora CP; Singh SK; Kumar S; Datusalia AK; Deep A
    Acta Pol Pharm; 2010; 67(3):283-90. PubMed ID: 20524431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Optimization of technological parameters using acustic cavitation to reach particle size reduction of pharmacon].
    Ambrus R; Bartos C; Szabóné RP
    Acta Pharm Hung; 2011; 81(2):51-8. PubMed ID: 21800710
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dissolution improvement of four poorly water soluble drugs by cogrinding with commonly used excipients.
    Vogt M; Kunath K; Dressman JB
    Eur J Pharm Biopharm; 2008 Feb; 68(2):330-7. PubMed ID: 17574401
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development and validation of in silico models for estimating drug preformulation risk in PEG400/water and Tween80/water systems.
    Crivori P; Morelli A; Pezzetta D; Rocchetti M; Poggesi I
    Eur J Pharm Sci; 2007 Nov; 32(3):169-81. PubMed ID: 17714921
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effective polymeric dispersants for vacuum, convection and freeze drying of drug nanosuspensions.
    Kim S; Lee J
    Int J Pharm; 2010 Sep; 397(1-2):218-24. PubMed ID: 20637852
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving flow properties of ibuprofen by fluidized bed particle thin-coating.
    Ehlers H; Räikkönen H; Antikainen O; Heinämäki J; Yliruusi J
    Int J Pharm; 2009 Feb; 368(1-2):165-70. PubMed ID: 19010403
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of the granulation process on nitrofurantoin granule characteristics.
    Arnaud P; Brossard D; Chaumeil JC
    Drug Dev Ind Pharm; 1998 Jan; 24(1):57-66. PubMed ID: 15605598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals.
    Crisp MT; Tucker CJ; Rogers TL; Williams RO; Johnston KP
    J Control Release; 2007 Feb; 117(3):351-9. PubMed ID: 17239469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose.
    Yi T; Wan J; Xu H; Yang X
    Eur J Pharm Sci; 2008 Aug; 34(4-5):274-80. PubMed ID: 18541418
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Near InfraRed Spectroscopy homogeneity evaluation of complex powder blends in a small-scale pharmaceutical preformulation process, a real-life application.
    Storme-Paris I; Clarot I; Esposito S; Chaumeil JC; Nicolas A; Brion F; Rieutord A; Chaminade P
    Eur J Pharm Biopharm; 2009 May; 72(1):189-98. PubMed ID: 19059338
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theoretical comparison of hydrodynamic diffusion layer models used for dissolution simulation in drug discovery and development.
    Sugano K
    Int J Pharm; 2008 Nov; 363(1-2):73-7. PubMed ID: 18675893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Melt granulation using a twin-screw extruder: a case study.
    Van Melkebeke B; Vermeulen B; Vervaet C; Remon JP
    Int J Pharm; 2006 Dec; 326(1-2):89-93. PubMed ID: 16949222
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoparticles: A personal experience for formulating poorly water soluble drugs.
    Cooper ER
    J Control Release; 2010 Feb; 141(3):300-2. PubMed ID: 19822177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selecting the particle size distribution for drugs with low water solubility - mathematical model.
    Arav Y; Bercovier M; Parnas H
    Drug Dev Ind Pharm; 2012 Aug; 38(8):940-51. PubMed ID: 22320660
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods.
    Peltonen L; Hirvonen J
    J Pharm Pharmacol; 2010 Nov; 62(11):1569-79. PubMed ID: 21039542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Processing of pharmaceutical materials by electrospraying under reduced pressure.
    Nyström M; Murtomaa M; Roine J; Sandler N; Salonen J
    Drug Dev Ind Pharm; 2015 Jan; 41(1):116-23. PubMed ID: 24164470
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel strategies for the formulation and processing of poorly water-soluble drugs.
    Göke K; Lorenz T; Repanas A; Schneider F; Steiner D; Baumann K; Bunjes H; Dietzel A; Finke JH; Glasmacher B; Kwade A
    Eur J Pharm Biopharm; 2018 May; 126():40-56. PubMed ID: 28532676
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of grinding balls on the size reduction of Aprepitant in wet ball milling procedure.
    Memarvar D; Yaqoubi S; Hamishehkar H; Lam M; Nokhodchi A
    Pharm Dev Technol; 2024 Apr; 29(4):353-358. PubMed ID: 38528824
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generation of wear during the production of drug nanosuspensions by wet media milling.
    Juhnke M; Märtin D; John E
    Eur J Pharm Biopharm; 2012 May; 81(1):214-22. PubMed ID: 22269938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of an active pharmaceutical ingredient by its dissolution properties: amoxicillin trihydrate as a model drug.
    Horkovics-Kovats S
    Chemotherapy; 2004 Nov; 50(5):234-44. PubMed ID: 15528889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.