BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 21595438)

  • 1. Flavoprotein hydroxylase PgaE catalyzes two consecutive oxygen-dependent tailoring reactions in angucycline biosynthesis.
    Kallio P; Patrikainen P; Suomela JP; Mäntsälä P; Metsä-Ketelä M; Niemi J
    Biochemistry; 2011 Jun; 50(24):5535-43. PubMed ID: 21595438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential action of two flavoenzymes, PgaE and PgaM, in angucycline biosynthesis: chemoenzymatic synthesis of gaudimycin C.
    Kallio P; Liu Z; Mäntsälä P; Niemi J; Metsä-Ketelä M
    Chem Biol; 2008 Feb; 15(2):157-66. PubMed ID: 18291320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial reconstruction of two cryptic angucycline antibiotic biosynthetic pathways.
    Palmu K; Ishida K; Mäntsälä P; Hertweck C; Metsä-Ketelä M
    Chembiochem; 2007 Sep; 8(13):1577-84. PubMed ID: 17654627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracing the evolution of angucyclinone monooxygenases: structural determinants for C-12b hydroxylation and substrate inhibition in PgaE.
    Kallio P; Patrikainen P; Belogurov GA; Mäntsälä P; Yang K; Niemi J; Metsä-Ketelä M
    Biochemistry; 2013 Jul; 52(26):4507-16. PubMed ID: 23731237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis.
    Koskiniemi H; Metsä-Ketelä M; Dobritzsch D; Kallio P; Korhonen H; Mäntsälä P; Schneider G; Niemi J
    J Mol Biol; 2007 Sep; 372(3):633-48. PubMed ID: 17669423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring enzymes involved in the biosynthesis of angucyclines contain latent context-dependent catalytic activities.
    Patrikainen P; Kallio P; Fan K; Klika KD; Shaaban KA; Mäntsälä P; Rohr J; Yang K; Niemi J; Metsä-Ketelä M
    Chem Biol; 2012 May; 19(5):647-55. PubMed ID: 22633416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of a two-component monooxygenase SnoaW/SnoaL2 involved in nogalamycin biosynthesis.
    Siitonen V; Blauenburg B; Kallio P; Mäntsälä P; Metsä-Ketelä M
    Chem Biol; 2012 May; 19(5):638-46. PubMed ID: 22633415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional analysis of angucycline C-6 ketoreductase LanV involved in landomycin biosynthesis.
    Paananen P; Patrikainen P; Kallio P; Mäntsälä P; Niemi J; Niiranen L; Metsä-Ketelä M
    Biochemistry; 2013 Aug; 52(31):5304-14. PubMed ID: 23848284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence of Classical and C-Ring-Cleaved Angucyclines: Elucidation of Early Tailoring Steps in Lugdunomycin and Thioangucycline Biosynthesis.
    Nuutila A; Xiao X; van der Heul HU; van Wezel GP; Dinis P; Elsayed SS; Metsä-Ketelä M
    ACS Chem Biol; 2024 May; 19(5):1131-1141. PubMed ID: 38668630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nested gene in Streptomyces bacteria encodes a protein involved in quaternary complex formation.
    Kallio P; Liu Z; Mäntsälä P; Niemi J; Metsä-Ketelä M
    J Mol Biol; 2008 Feb; 375(5):1212-21. PubMed ID: 18076902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative aldehyde deformylation catalyzed by NADPH-cytochrome P450 reductase and the flavoprotein domain of neuronal nitric oxide synthase.
    Vatsis KP; Coon MJ
    Biochem Biophys Res Commun; 2005 Dec; 337(4):1107-11. PubMed ID: 16226717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
    Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP
    Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    Biochemistry; 2005 Aug; 44(30):10434-42. PubMed ID: 16042421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases.
    Smilda T; Kamminga AH; Reinders P; Baron W; van Hylckama Vlieg JE; Beintema JJ
    J Mol Evol; 2001 May; 52(5):457-66. PubMed ID: 11443349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.