These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 21595439)
1. Mechanistic studies of reactions of peroxodiiron(III) intermediates in T201 variants of toluene/o-xylene monooxygenase hydroxylase. Song WJ; Lippard SJ Biochemistry; 2011 Jun; 50(23):5391-9. PubMed ID: 21595439 [TBL] [Abstract][Full Text] [Related]
2. Active site threonine facilitates proton transfer during dioxygen activation at the diiron center of toluene/o-xylene monooxygenase hydroxylase. Song WJ; McCormick MS; Behan RK; Sazinsky MH; Jiang W; Lin J; Krebs C; Lippard SJ J Am Chem Soc; 2010 Oct; 132(39):13582-5. PubMed ID: 20839885 [TBL] [Abstract][Full Text] [Related]
3. Dioxygen activation at non-heme diiron centers: oxidation of a proximal residue in the I100W variant of toluene/o-xylene monooxygenase hydroxylase. Murray LJ; García-Serres R; McCormick MS; Davydov R; Naik SG; Kim SH; Hoffman BM; Huynh BH; Lippard SJ Biochemistry; 2007 Dec; 46(51):14795-809. PubMed ID: 18044971 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a peroxodiiron(III) intermediate in the T201S variant of toluene/o-xylene monooxygenase hydroxylase from Pseudomonas sp. OX1. Song WJ; Behan RK; Naik SG; Huynh BH; Lippard SJ J Am Chem Soc; 2009 May; 131(17):6074-5. PubMed ID: 19354250 [TBL] [Abstract][Full Text] [Related]
5. Insights into the different dioxygen activation pathways of methane and toluene monooxygenase hydroxylases. Bochevarov AD; Li J; Song WJ; Friesner RA; Lippard SJ J Am Chem Soc; 2011 May; 133(19):7384-97. PubMed ID: 21517016 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the arene-oxidizing intermediate in ToMOH as a diiron(III) species. Murray LJ; Naik SG; Ortillo DO; García-Serres R; Lee JK; Huynh BH; Lippard SJ J Am Chem Soc; 2007 Nov; 129(46):14500-10. PubMed ID: 17967027 [TBL] [Abstract][Full Text] [Related]
7. Dioxygen activation at non-heme diiron centers: characterization of intermediates in a mutant form of toluene/o-xylene monooxygenase hydroxylase. Murray LJ; García-Serres R; Naik S; Huynh BH; Lippard SJ J Am Chem Soc; 2006 Jun; 128(23):7458-9. PubMed ID: 16756297 [TBL] [Abstract][Full Text] [Related]
8. Threonine 201 in the diiron enzyme toluene 4-monooxygenase is not required for catalysis. Pikus JD; Mitchell KH; Studts JM; McClay K; Steffan RJ; Fox BG Biochemistry; 2000 Feb; 39(4):791-9. PubMed ID: 10651645 [TBL] [Abstract][Full Text] [Related]
9. Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. capsulatus (Bath): evidence for a multi-step, proton-dependent reaction pathway. Tinberg CE; Lippard SJ Biochemistry; 2009 Dec; 48(51):12145-58. PubMed ID: 19921958 [TBL] [Abstract][Full Text] [Related]
11. Mössbauer studies of the formation and reactivity of a quasi-stable peroxo intermediate of stearoyl-acyl carrier protein Delta 9-desaturase. Broadwater JA; Achim C; Münck E; Fox BG Biochemistry; 1999 Sep; 38(38):12197-204. PubMed ID: 10493786 [TBL] [Abstract][Full Text] [Related]
12. Role for threonine 201 in the catalytic cycle of the soluble diiron hydroxylase toluene 4-monooxygenase. Elsen NL; Bailey LJ; Hauser AD; Fox BG Biochemistry; 2009 May; 48(18):3838-46. PubMed ID: 19290655 [TBL] [Abstract][Full Text] [Related]
13. Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for enhanced chlorinated ethene degradation and o-xylene oxidation. Vardar G; Wood TK Appl Microbiol Biotechnol; 2005 Sep; 68(4):510-7. PubMed ID: 15696279 [TBL] [Abstract][Full Text] [Related]
14. X-ray absorption spectroscopic study of the reduced hydroxylases of methane monooxygenase and toluene/o-xylene monooxygenase: differences in active site structure and effects of the coupling proteins MMOB and ToMOD. Rudd DJ; Sazinsky MH; Lippard SJ; Hedman B; Hodgson KO Inorg Chem; 2005 Jun; 44(13):4546-54. PubMed ID: 15962961 [TBL] [Abstract][Full Text] [Related]
15. Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli. Baldwin J; Krebs C; Saleh L; Stelling M; Huynh BH; Bollinger JM; Riggs-Gelasco P Biochemistry; 2003 Nov; 42(45):13269-79. PubMed ID: 14609338 [TBL] [Abstract][Full Text] [Related]
16. Modeling the syn disposition of nitrogen donors in non-heme diiron enzymes. Synthesis, characterization, and hydrogen peroxide reactivity of diiron(III) complexes with the syn N-donor ligand H2BPG2DEV. Friedle S; Kodanko JJ; Morys AJ; Hayashi T; Moënne-Loccoz P; Lippard SJ J Am Chem Soc; 2009 Oct; 131(40):14508-20. PubMed ID: 19757795 [TBL] [Abstract][Full Text] [Related]
17. Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Tinberg CE; Song WJ; Izzo V; Lippard SJ Biochemistry; 2011 Mar; 50(11):1788-98. PubMed ID: 21366224 [TBL] [Abstract][Full Text] [Related]
18. Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates H(peroxo) and Q proceed by distinct mechanisms. Tinberg CE; Lippard SJ Biochemistry; 2010 Sep; 49(36):7902-12. PubMed ID: 20681546 [TBL] [Abstract][Full Text] [Related]
19. Component interactions and electron transfer in toluene/o-xylene monooxygenase. Liang AD; Lippard SJ Biochemistry; 2014 Dec; 53(47):7368-75. PubMed ID: 25402597 [TBL] [Abstract][Full Text] [Related]
20. Reactions of the peroxo intermediate of soluble methane monooxygenase hydroxylase with ethers. Beauvais LG; Lippard SJ J Am Chem Soc; 2005 May; 127(20):7370-8. PubMed ID: 15898785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]