These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 21595447)
21. Quartz crystal microbalance with dissipation as a biosensing platform to evaluate cell-surface interactions of osteoblast cells. Kılıç A; Kok FN Biointerphases; 2017 Dec; 13(1):011001. PubMed ID: 29232957 [TBL] [Abstract][Full Text] [Related]
22. Hydration and energy dissipation measurements of biomolecules on a piezoelectric quartz oscillator by admittance analyses. Ozeki T; Morita M; Yoshimine H; Furusawa H; Okahata Y Anal Chem; 2007 Jan; 79(1):79-88. PubMed ID: 17194124 [TBL] [Abstract][Full Text] [Related]
23. Utilizing QCM-D to characterize the adhesive mucilage secreted by two marine diatom species in-situ and in real-time. Molino PJ; Hodson OM; Quinn JF; Wetherbee R Biomacromolecules; 2006 Nov; 7(11):3276-82. PubMed ID: 17096561 [TBL] [Abstract][Full Text] [Related]
24. Competitive adsorption of fibronectin and albumin on hydroxyapatite nanocrystals. Tagaya M; Ikoma T; Hanagata N; Yoshioka T; Tanaka J Sci Technol Adv Mater; 2011 Jun; 12(3):034411. PubMed ID: 27877402 [TBL] [Abstract][Full Text] [Related]
25. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects. Marx KA; Zhou T; Montrone A; McIntosh D; Braunhut SJ Anal Biochem; 2007 Feb; 361(1):77-92. PubMed ID: 17161375 [TBL] [Abstract][Full Text] [Related]
26. Dynamic cell adhesion and viscoelastic signatures distinguish normal from malignant human mammary cells using quartz crystal microbalance. Zhou T; Marx KA; Dewilde AH; McIntosh D; Braunhut SJ Anal Biochem; 2012 Feb; 421(1):164-71. PubMed ID: 22119070 [TBL] [Abstract][Full Text] [Related]
27. Viscoelastic sensing of conformational changes in plasminogen induced upon binding of low molecular weight compounds. Nilebäck E; Westberg F; Deinum J; Svedhem S Anal Chem; 2010 Oct; 82(20):8374-6. PubMed ID: 20853853 [TBL] [Abstract][Full Text] [Related]
28. Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode. Li J; Thielemann C; Reuning U; Johannsmann D Biosens Bioelectron; 2005 Jan; 20(7):1333-40. PubMed ID: 15590287 [TBL] [Abstract][Full Text] [Related]
29. Convergence of dissipation and impedance analysis of quartz crystal microbalance studies. Zhang Y; Du B; Chen X; Ma H Anal Chem; 2009 Jan; 81(2):642-8. PubMed ID: 19072247 [TBL] [Abstract][Full Text] [Related]
30. Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements. Reviakine I; Rossetti FF; Morozov AN; Textor M J Chem Phys; 2005 May; 122(20):204711. PubMed ID: 15945768 [TBL] [Abstract][Full Text] [Related]
31. Adsorption and viscoelastic properties of fractionated mucin (BSM) and bovine serum albumin (BSA) studied with quartz crystal microbalance (QCM-D). Feiler AA; Sahlholm A; Sandberg T; Caldwell KD J Colloid Interface Sci; 2007 Nov; 315(2):475-81. PubMed ID: 17706239 [TBL] [Abstract][Full Text] [Related]
32. Viscoelastic properties of adsorbed and cross-linked polypeptide and protein layers at a solid-liquid interface. Dutta AK; Nayak A; Belfort G J Colloid Interface Sci; 2008 Aug; 324(1-2):55-60. PubMed ID: 18508070 [TBL] [Abstract][Full Text] [Related]
33. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. Mermut O; Phillips DC; York RL; McCrea KR; Ward RS; Somorjai GA J Am Chem Soc; 2006 Mar; 128(11):3598-607. PubMed ID: 16536533 [TBL] [Abstract][Full Text] [Related]
34. Real-time investigation of the muco-adhesive properties of Lactococcus lactis using a quartz crystal microbalance with dissipation monitoring. Le DT; Zanna S; Frateur I; Marcus P; Loubière P; Dague E; Mercier-Bonin M Biofouling; 2012; 28(5):479-90. PubMed ID: 22594395 [TBL] [Abstract][Full Text] [Related]
35. The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Zhou T; Marx KA; Warren M; Schulze H; Braunhut SJ Biotechnol Prog; 2000; 16(2):268-77. PubMed ID: 10753454 [TBL] [Abstract][Full Text] [Related]
36. Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D. Tymchenko N; Nilebäck E; Voinova MV; Gold J; Kasemo B; Svedhem S Biointerphases; 2012 Dec; 7(1-4):43. PubMed ID: 22791360 [TBL] [Abstract][Full Text] [Related]
37. Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. Pax M; Rieger J; Eibl RH; Thielemann C; Johannsmann D Analyst; 2005 Nov; 130(11):1474-7. PubMed ID: 16222366 [TBL] [Abstract][Full Text] [Related]
38. Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Zhu X; Wang Z; Zhao A; Huang N; Chen H; Zhou S; Xie X Colloids Surf B Biointerfaces; 2014 Apr; 116():459-64. PubMed ID: 24552662 [TBL] [Abstract][Full Text] [Related]
39. Effects of adhesion molecules on the behavior of osteoblast-like cells and normal human fibroblasts on different titanium surfaces. Park BS; Heo SJ; Kim CS; Oh JE; Kim JM; Lee G; Park WH; Chung CP; Min BM J Biomed Mater Res A; 2005 Sep; 74(4):640-51. PubMed ID: 16015642 [TBL] [Abstract][Full Text] [Related]
40. Employing two different quartz crystal microbalance models to study changes in viscoelastic behavior upon transformation of lipid vesicles to a bilayer on a gold surface. Cho NJ; Kanazawa KK; Glenn JS; Frank CW Anal Chem; 2007 Sep; 79(18):7027-35. PubMed ID: 17685547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]