These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21595449)

  • 1. On the secondary droplets of self-running gallium droplets on GaAs surface.
    Wu J; Wang ZM; Li AZ; Benamara M; Salamo GJ
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1817-20. PubMed ID: 21595449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale footprints of self-running gallium droplets on GaAs surface.
    Wu J; Wang ZM; Li AZ; Benamara M; Li S; Salamo GJ
    PLoS One; 2011; 6(6):e20765. PubMed ID: 21673965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Running droplets of gallium from evaporation of gallium arsenide.
    Tersoff J; Jesson DE; Tang WX
    Science; 2009 Apr; 324(5924):236-8. PubMed ID: 19359583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-running Ga droplets on GaAs (111)A and (111)B surfaces.
    Kanjanachuchai S; Euaruksakul C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7709-13. PubMed ID: 23942460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by droplet epitaxy.
    Tong CZ; Yoon SF
    Nanotechnology; 2008 Sep; 19(36):365604. PubMed ID: 21828875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs(1-x)Bi(x) films.
    Wood AW; Collar K; Li J; Brown AS; Babcock SE
    Nanotechnology; 2016 Mar; 27(11):115704. PubMed ID: 26876494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning.
    Plissard S; Larrieu G; Wallart X; Caroff P
    Nanotechnology; 2011 Jul; 22(27):275602. PubMed ID: 21597162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of in situ annealing of GaAs(100) substrates on the subsequent growth of InAs quantum dots by molecular beam epitaxy.
    Morales-Cortés H; Mejía-García C; Méndez-García VH; Vázquez-Cortés D; Rojas-Ramírez JS; Contreras-Guerrero R; Ramírez-López M; Martínez-Velis I; López-López M
    Nanotechnology; 2010 Apr; 21(13):134012. PubMed ID: 20208110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of change in critical thickness of In droplet formation on GaAs(100).
    Lee JH; Wang ZhM; Salamo GJ
    J Phys Condens Matter; 2007 Apr; 19(17):176223. PubMed ID: 21690968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-induced self-pinning and nanolayering of AuSi eutectic droplets.
    Ferralis N; Maboudian R; Carraro C
    J Am Chem Soc; 2008 Feb; 130(8):2681-5. PubMed ID: 18251481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable synthesis of self-running Ga droplets on GaAs (001) in MBE using RHEED patterns.
    Trisna BA; Nakareseisoon N; Eiwwongcharoen W; Panyakeow S; Kanjanachuchai S
    Nanoscale Res Lett; 2015; 10():184. PubMed ID: 25977657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Ga droplet formation on (311)A and (511)A GaAs surfaces.
    Abuwaar ZY; Wang ZM; Lee JH; Salamo GJ
    Nanotechnology; 2006 Aug; 17(16):4037-40. PubMed ID: 21727534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition controlled by surface morphology during langmuir evaporation of GaAs.
    Tersoff J; Jesson DE; Tang WX
    Phys Rev Lett; 2010 Jul; 105(3):035702. PubMed ID: 20867779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enable a Facile Size Re-distribution of MBE-Grown Ga-Droplets via In Situ Pulsed Laser Shooting.
    Geng B; Shi Z; Chen C; Zhang W; Yang L; Deng C; Yang X; Miao L; Peng C
    Nanoscale Res Lett; 2021 Aug; 16(1):126. PubMed ID: 34347177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Ga droplets on patterned GaAs (100) by molecular beam epitaxy.
    Li MY; Hirono Y; Koukourinkova SD; Sui M; Song S; Kim ES; Lee J; Salamo GJ
    Nanoscale Res Lett; 2012 Oct; 7(1):550. PubMed ID: 23033893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures.
    Heiss M; Gustafsson A; Conesa-Boj S; Peiró F; Morante JR; Abstreiter G; Arbiol J; Samuelson L; Fontcuberta i Morral A
    Nanotechnology; 2009 Feb; 20(7):075603. PubMed ID: 19417424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular beam deposition of nanoscale ionic liquids in ultrahigh vacuum.
    Maruyama S; Takeyama Y; Taniguchi H; Fukumoto H; Itoh M; Kumigashira H; Oshima M; Yamamoto T; Matsumoto Y
    ACS Nano; 2010 Oct; 4(10):5946-52. PubMed ID: 20863104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallium-assisted growth of silicon nanowires by electron cyclotron resonance plasmas.
    Hernández MJ; Cervera M; Ruiz E; Pau JL; Piqueras J; Avella M; Jiménez J
    Nanotechnology; 2010 Nov; 21(45):455602. PubMed ID: 20947948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating the dynamics of self-propelled gallium droplets by gold nanoparticles and nanoscale surface morphology.
    Zakharov AA; Mårsell E; Hilner E; Timm R; Andersen JN; Lundgren E; Mikkelsen A
    ACS Nano; 2015 May; 9(5):5422-31. PubMed ID: 25880600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly ordered Ga nanodroplets on a GaAs surface formed by a focused ion beam.
    Wei Q; Lian J; Lu W; Wang L
    Phys Rev Lett; 2008 Feb; 100(7):076103. PubMed ID: 18352573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.