These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21595713)

  • 1. Specification of supervisory control systems for ventricular assist devices.
    Cavalheiro AC; Santos Fo DJ; Andrade A; Cardoso JR; Horikawa O; Bock E; Fonseca J
    Artif Organs; 2011 May; 35(5):465-70. PubMed ID: 21595713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac prosthesis as an advanced surgical therapy for end-stage cardiac patients: current status and future perspectives.
    Takatani S
    J Med Dent Sci; 2000 Sep; 47(3):151-65. PubMed ID: 12160228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Synthesis and evaluation of the adaptive control system for the ventricular assist device by using the circulatory system simulator].
    Feng JS; Yoshizawa M; Takeda H; Miura M; Yanbe T; Katahira Y; Nitta S
    Iyodenshi To Seitai Kogaku; 1989 Mar; 27(1):8-18. PubMed ID: 2754864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic suspension of the rotor of a ventricular assist device of mixed flow type.
    Horikawa O; de Andrade AJ; da Silva I; Bock EG
    Artif Organs; 2008 Apr; 32(4):334-41. PubMed ID: 18370950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A controller for a miniature intra-aortic ventricular assist device.
    Hsu PL; Bruch J; McMahon R
    Artif Organs; 2011 Mar; 35(3):282-7. PubMed ID: 21114678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; NĂ¼sser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular simulator improvement: pressure versus volume loop assessment.
    Fonseca J; Andrade A; Nicolosi DE; Biscegli JF; Leme J; Legendre D; Bock E; Lucchi JC
    Artif Organs; 2011 May; 35(5):454-8. PubMed ID: 21595711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical comparison of hemodynamics with atrium to aorta and ventricular apex to aorta VAD support.
    Korakianitis T; Shi Y
    ASAIO J; 2007; 53(5):537-48. PubMed ID: 17885325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condition monitoring of rotary blood pumps.
    Jammu VB; Malanoski S; Walter T; Smith W
    ASAIO J; 1997; 43(5):M639-43. PubMed ID: 9360123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model to evaluate control strategies for mechanical circulatory support.
    Cox LG; Loerakker S; Rutten MC; de Mol BA; van de Vosse FN
    Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electro-fluid-dynamic simulator for the cardiovascular system.
    Felipini CL; de Andrade AJ; Lucchi JC; da Fonseca JW; Nicolosi D
    Artif Organs; 2008 Apr; 32(4):349-54. PubMed ID: 18370952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atrial versus ventricular cannulation for a rotary ventricular assist device.
    Timms D; Gregory S; Hsu PL; Thomson B; Pearcy M; McNeil K; Fraser J; Steinseifer U
    Artif Organs; 2010 Sep; 34(9):714-20. PubMed ID: 20883390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological control of an in-series connected pulsatile VAD: numerical simulation study.
    Shi Y; Shi Y; Korakianitis T
    Comput Methods Biomech Biomed Engin; 2011 Nov; 14(11):995-1007. PubMed ID: 21161796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model.
    Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization.
    Schima H; Vollkron M; Jantsch U; Crevenna R; Roethy W; Benkowski R; Morello G; Quittan M; Hiesmayr M; Wieselthaler G
    J Heart Lung Transplant; 2006 Feb; 25(2):167-73. PubMed ID: 16446216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.