BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21595761)

  • 1. Using spontaneous photon emission to image lipid oxidation patterns in plant tissues.
    Birtic S; Ksas B; Genty B; Mueller MJ; Triantaphylidès C; Havaux M
    Plant J; 2011 Sep; 67(6):1103-15. PubMed ID: 21595761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoluminescence imaging: a non-invasive tool for mapping oxidative stress.
    Havaux M; Triantaphylidès C; Genty B
    Trends Plant Sci; 2006 Oct; 11(10):480-4. PubMed ID: 16956784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves.
    Flor-Henry M; McCabe TC; de Bruxelles GL; Roberts MR
    BMC Plant Biol; 2004 Nov; 4():19. PubMed ID: 15550176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent neural tissue oxidation emits intrinsic ultraweak photons.
    Kataoka Y; Cui Y; Yamagata A; Niigaki M; Hirohata T; Oishi N; Watanabe Y
    Biochem Biophys Res Commun; 2001 Jul; 285(4):1007-11. PubMed ID: 11467852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging of Lipid Peroxidation-Associated Chemiluminescence in Plants: Spectral Features, Regulation and Origin of the Signal in Leaves and Roots.
    Havaux M; Ksas B
    Antioxidants (Basel); 2022 Jul; 11(7):. PubMed ID: 35883824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission (UPE)-measurement. I: mechanisms of UPE of biological materials.
    Khabiri F; Hagens R; Smuda C; Soltau A; Schreiner V; Wenck H; Wittern KP; Duchstein HJ; Mei W
    Skin Res Technol; 2008 Feb; 14(1):103-11. PubMed ID: 18211608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous and thermoinduced photon emission: new methods to detect and quantify oxidative stress in plants.
    Havaux M
    Trends Plant Sci; 2003 Sep; 8(9):409-13. PubMed ID: 13678906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminescence spectroscopic observation of singlet oxygen formation in extra virgin olive oil as affected by irradiation light wavelengths, 1,4-diazabicyclo[2.2.2]octane, irradiation time, and oxygen bubbling.
    Jung MY; Choi DS; Park KH; Lee B; Min DB
    J Food Sci; 2011; 76(1):C59-63. PubMed ID: 21535654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-weak photon emission as a non-invasive tool for the measurement of oxidative stress induced by UVA radiation in Arabidopsis thaliana.
    Rastogi A; Pospíšil P
    J Photochem Photobiol B; 2013 Jun; 123():59-64. PubMed ID: 23624533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive method for in vivo detection of chlorophyll precursors.
    Kristiansen KA; Khrouchtchova A; Stenbaek A; Schulz A; Jensen PE
    Photochem Photobiol Sci; 2009 Feb; 8(2):279-86. PubMed ID: 19247522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous ultraweak photon emission from biological systems and the endogenous light field.
    Schwabl H; Klima H
    Forsch Komplementarmed Klass Naturheilkd; 2005 Apr; 12(2):84-9. PubMed ID: 15947466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana.
    Voss I; Koelmann M; Wojtera J; Holtgrefe S; Kitzmann C; Backhausen JE; Scheibe R
    Physiol Plant; 2008 Jul; 133(3):584-98. PubMed ID: 18494733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: a case study with Arabidopsis yellow variegated 2.
    Yoshida K; Watanabe C; Kato Y; Sakamoto W; Noguchi K
    Plant Cell Physiol; 2008 Apr; 49(4):592-603. PubMed ID: 18296449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves.
    Bechtold U; Rabbani N; Mullineaux PM; Thornalley PJ
    Plant J; 2009 Aug; 59(4):661-71. PubMed ID: 19392687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature.
    Loreto F; Barta C; Brilli F; Nogues I
    Plant Cell Environ; 2006 Sep; 29(9):1820-8. PubMed ID: 16913871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifications and oxidation of lipids and proteins in human serum detected by thermochemiluminescence.
    Shnizer S; Kagan T; Lanir A; Maor I; Reznick AZ
    Luminescence; 2003; 18(2):90-6. PubMed ID: 12687628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraweak chemiluminescence: a sensitive assay for oxidative radical reactions.
    Boveris A; Cadenas E; Chance B
    Fed Proc; 1981 Feb; 40(2):195-8. PubMed ID: 7461143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Transient states in the photoreactions of chlorophyll-protein complexes].
    Chibisov AK; Zakharova NI; Peshkin AF; Slavnova TD
    Mol Biol (Mosk); 1976; 10(5):1002-10. PubMed ID: 1053065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool.
    Ohad I; Dal Bosco C; Herrmann RG; Meurer J
    Biochemistry; 2004 Mar; 43(8):2297-308. PubMed ID: 14979726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis.
    Wang Z; Xiao Y; Chen W; Tang K; Zhang L
    J Integr Plant Biol; 2010 Apr; 52(4):400-9. PubMed ID: 20377702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.