BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21595868)

  • 1. Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state.
    Popova AV; Hincha DK
    BMC Biophys; 2011 May; 4():11. PubMed ID: 21595868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases.
    Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM
    Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines.
    Lewis RN; McElhaney RN
    Biophys J; 1993 Apr; 64(4):1081-96. PubMed ID: 8494972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):119-34. PubMed ID: 9889344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of the structure and organization of cationic lipid bilayer membranes: calorimetric, spectroscopic, and x-ray diffraction studies of linear saturated P-O-ethyl phosphatidylcholines.
    Lewis RN; Winter I; Kriechbaum M; Lohner K; McElhaney RN
    Biophys J; 2001 Mar; 80(3):1329-42. PubMed ID: 11222294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes.
    Matsuki H; Endo S; Sueyoshi R; Goto M; Tamai N; Kaneshina S
    Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1222-1232. PubMed ID: 28366514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid composition determines the effects of arbutin on the stability of membranes.
    Hincha DK; Oliver AE; Crowe JH
    Biophys J; 1999 Oct; 77(4):2024-34. PubMed ID: 10512822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes.
    Lewis RN; Zweytick D; Pabst G; Lohner K; McElhaney RN
    Biophys J; 2007 May; 92(9):3166-77. PubMed ID: 17293402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol.
    Lewis RN; Zhang YP; McElhaney RN
    Biochim Biophys Acta; 2005 Mar; 1668(2):203-14. PubMed ID: 15737331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nonbilayer lipids on membrane binding and insertion of the catalytic domain of leader peptidase.
    van den Brink-van der Laan E; Dalbey RE; Demel RA; Killian JA; de Kruijff B
    Biochemistry; 2001 Aug; 40(32):9677-84. PubMed ID: 11583168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization by infrared spectroscopy of the bilayer to nonbilayer phase transition of phosphatidylethanolamines.
    Mantsch HH; Martin A; Cameron DG
    Biochemistry; 1981 May; 20(11):3138-45. PubMed ID: 7195735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physical properties of glycosyl diacylglycerols. Calorimetric, X-ray diffraction and Fourier transform spectroscopic studies of a homologous series of 1,2-di-O-acyl-3-O-(beta-D-galactopyranosyl)-sn-glycerols.
    Mannock DA; Harper PE; Gruner SM; McElhaney RN
    Chem Phys Lipids; 2001 Jun; 111(2):139-61. PubMed ID: 11457442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared and time-resolved fluorescence spectroscopic studies of the polymorphic phase behavior of phosphatidylethanolamine/diacylglycerol lipid mixtures.
    Chen SY; Cheng KH
    Chem Phys Lipids; 1990 Dec; 56(2-3):149-58. PubMed ID: 2095990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes.
    Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols.
    Zhang YP; Lewis RN; McElhaney RN
    Biophys J; 1997 Feb; 72(2 Pt 1):779-93. PubMed ID: 9017203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential scanning calorimetry and Fourier transform infrared spectroscopic studies of phospholipid organization and lipid-peptide interactions in nanoporous substrate-supported lipid model membranes.
    Alaouie AM; Lewis RN; McElhaney RN
    Langmuir; 2007 Jun; 23(13):7229-34. PubMed ID: 17530791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of arbutin on membrane integrity during drying is mediated by stabilization of the lamellar phase in the presence of nonbilayer-forming lipids.
    Oliver AE; Hincha DK; Tsvetkova NM; Vigh L; Crowe JH
    Chem Phys Lipids; 2001 May; 111(1):37-57. PubMed ID: 11438283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of lateral stress in lipid layer containing nonbilayer phase preferring lipids by frequency-domain fluorescence spectroscopy.
    Chen SY; Cheng KH; Van der Meer BW
    Biochemistry; 1992 Apr; 31(15):3759-68. PubMed ID: 1567830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.